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Abstract—Advances in manufacturing technology have made
it possible to replace some components anywhere to meet the
needs of different functions with multi-function devices. However,
remote servers are typically not informed when workers replace
device components. In these scenarios, there is a mismatch
in the data models between the device components and the
servers. To this end, this study proposes an automatic component
identification method based on time series classification for
intelligent devices. First, the component identification problem is
transformed into a time series classification problem. Then, some
classifiers are trained based on the time series data generated by
the models. In the next step, the classifiers match the collected
data with the component models. Finally, the components are
identified by a fusion decision, respectively. The experimental
results show that the proposed method has a high component
identification accuracy.

Index Terms—Internet of Things, Automatic component identi-
fication, Model matching, Time series classification, Deep learning

I. INTRODUCTION

As the Internet of Things (IoT) [1]–[3] develops, sensors

are becoming widely used in intelligent devices. So these

devices are capable of collecting data and transmitting it to the

server in the cloud, providing a convenient and efficient way

to store and manage the data. This provides great convenience

for monitoring [4], [5], anomaly detection [6], [7] or fault

diagnosis [8], [9] the intelligent devices.

In general, the monitoring system is a powerful tool for

intelligent device management. It is capable of assessing the

performance of devices based on their data models, and can

detect any potential issues or faults that may arise. It can

also diagnose these problems and provide solutions that can

help to ensure that the devices continue to run efficiently. The

monitoring system is an invaluable asset for any organization

that relies on intelligent devices, as it can help to ensure that

they remain in peak condition.

With the development of manufacturing technology [10],

[11], one intelligent device can integrate multiple functions.

In this case, multi-function devices can replace some of their

components to achieve a specified function. For example, the

same excavator can dig in the ground or drill on hard pavement

by simply changing the mechanical arms [12]. However, re-

mote servers are typically not informed when workers replace

�Corresponding author: Yupeng Hu, Cun Ji.

device components. This will lead to a mismatch in the data

models between the device components and the servers.

To address this situation, some manufacturers have at-

tempted to add identification information to device compo-

nents [13]. Another researchers identified components using

additional hardware [14], [15]. However, these approaches

faces the following challenges: 1) New components required.

Most of the current components do not have identification

information on them. To add identification information, new

components had to be developed on top of the original ones. 2)

Significant updating of the monitoring system. To accept

the identification information, the monitoring system in the

cloud needs to be significantly updated. Only then can the

monitoring system build a new device data model based on

the component identification information. 3) Narrow range
of customisation. Components that have been sold cannot

be modified. Adding identification information will not work

for them. These methods is only suitable for new production

intelligent device.

To address these challenges, it is desirable to automatically

identify the components of a device based on its data. In other

words, we should automatically identify device components

based on the collected data [12], [16], [17]. The device

usually collects observations periodically [18]. The collected

data are naturally time series [19]. Therefore, this study

proposes an automatic component identification method based

on time series classification for intelligent devices. First, the

component identification problem is transformed into a time

series classification problem. Then, some classifiers are trained

based on the time series data generated by the models. In

the next step, the classifiers match the collected data with the

component models, respectively. Finally, the components are

identified by a fusion decision.

The main contributions of this paper can be summarized as

follows:

• We have described the scenario of automatic component

identification for intelligent devices. In this scenario,

multi-function devices can replace some of their com-

ponents to achieve a specified function. And we should

automatically identify device components based on data.

• We transformed the component identification problem

into a time series classification problem. In this way, we
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can identify device components by predicting the label

of the collected time series of the component.

• A fusion method for automatic component identification

based on time series classification is proposed.

• Experiments are conducted to show the effects of the

proposed method. The experimental results show that

the proposed method has a high component identification

accuracy.

The rest of this paper is structured as follows. Section II

discusses some related work. In Section III we describe the

motivation of the problem. The proposed method is presented

in Section IV. Experimental results are presented in Section

V. And our conclusions are given in Section VI.

II. RELATED WORK

A. Automatic Component Identification

The proliferation of the Internet of Things [20], [21] and

advances in manufacturing technology [22], [23] have enabled

the development of devices that can easily replace a number

of components. In this scenario, automatic component identi-

fication is helpful for remote control, detection or diagnosis

of these devices.

A simple solution for automatic component identification is

for components to actively upload their identification informa-

tion. For example, Motamedi and Hammad [13] managed the

components through their radio frequency identification tags.

However, adding identification information to components

may require updating the operating system of the intelligent

device. In addition, the monitoring system in the cloud needs

to be significantly updated to accept the identification infor-

mation.

Some researchers identified components using additional

hardware. Gao et al. [14] recognized electrical components us-

ing some cameras. Sánchez et al. [15] identified devices based

on behavioural fingerprinting of the embedded components.

However, the additional hardware is limited in adaptation

scenarios.

Recently, more and more researchers have focused on iden-

tifying components of devices based on the collected data [12].

Giuliani et al. [16] proposed some hybrid techniques based

on some field data for automatic model matching. Marchal et

al. [17] identified the types of components by analyzing their

periodic communication.

Due to the convenience of data analysis, this paper focuses

on component identification based on the collected data.

B. Time Series Classification Methods

In general, the components usually collect observations

periodically [18]. In other words, the collected data of the

components is in the form of time series [19]. Therefore, we

transform the component identification problem into the time

series classification problem (see section III).

Due to the widespread existence of time series classification,

it has attracted the attention of a large number of researchers

[24], [25], and hundreds of time series methods have been

proposed in recent decades [26]–[28]. These methods can be

D

Fig. 1: Relations among device, components, and models. In

this figure, D represents one intelligent device, C represents

one component, and M represents the data model of the

corresponding component.

mainly divided into three categories [29]: 1) Distance-based

methods focus on the distance measures between time series

[26], [30]. They predict the label of a new time series as

the nearest time series. 2) Feature-based methods classify

time series based on features, such as: statistical features

[31], [32], structural features [33], [34], the 22 canonical

features (catch22) [26], [30], temporal features [35], [36]

and word frequency features [37]. 3) Model-based methods

assume that a model produces time series in the same class

[38]. Models used in time series classification include auto-

regressive models, Markov models and deep learning models.

Due to its excellent performance, more and more researchers

have been classifying time series based on deep learning

models [39]. Zhao et al. [40] proposed a novel convolutional

neural network (CNN) to generate features for time series

classification. Wang et al. [41] applied the deep MultiLayer

Perceptrons (MLP), Fully Convolutional Networks (FCN) and

Residual Networks (ResNet) to time series classification. They

suggested that FCN can be used as a simple but powerful

baseline for time series classification. Dempster et al. [42]

classified time series using RandOm Convolutional KErnel

Transformation (ROCKET). On this basis, Dempster et al. [43]

used a small fixed set of kernels to replace the random kernels

in order to improve the training speed of ROCKET. Tan et al.

[44] added multiple pooling to ROCKET.

III. PROBLEM MOTIVATION

A. Problem Scenario

multi-function devices can replace some of their compo-

nents to achieve a specified function. This paper focuses

on the following scenario: some components of the devices

can be changed by the users. A demo of this scenario is

shown in Fig. 1. In Fig. 1, D represents a smart device, C
represents a component, and M represents the data model of

the corresponding component. In this scenario, users can swap

components within the same dashed box.

To study the problem more conveniently, we make the

following assumptions for this scenario:

541
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Fig. 2: Identify the current components through matching data

to one model.

• Assumption 1: Only one parameter is associated with a
device component. Based on this assumption, a multi-

parameter component can be spit out as several single-

parameter components.

• Assumption 2: Each component corresponds to only one
data model. If components have multiple work modes,

each work mode is considered a component. Switching

work modes is also considered to be a replacement of

components.

• Assumption 3: The parameters between different com-
ponents are independent. In the future we will study

components with associated parameters.

• Assumption 4: The component periodically generates
observations of parameters, and the device uploads the
data in a period to the server in batches. Based on

this assumption, each period’s data is in time series

format and can be represented as an Eq. (1). In Eq. (1),

V1, V2, V3, · · · are observations in chronological order.

{V1, V2, V3, · · · } (1)

B. Problems

Under this scenario, this paper is committed to solving the

following problems:

Problem 1: Identify the current components based on time
series classification.

As described earlier, workers typically do not inform remote

servers when they replace device components. The remote

server must identify the current component. As shown in

Fig. 2, we can identify the current by matching the component

data with models.

As in Assumption 4, the component data is in time series

format. So, time series classification can be used to match
the component data with models. In other words, we need

to predict time series to a label of component models.

Problem 2: Get the conversion relationships between com-
ponents.

Fig. 3: Conversion relationships among components.

There may be some conversion relationships between com-

ponents. As Fig. 3 shows, Component C1
i can be replaced by

Component C2
i or Component C3

i . In this case we want to get

the conversion relations between the components in Fig. 3. In

Fig. 3, the arrow represents the direction of transformation.

For a one-way arrow, only the component to which the arrow

points can replace the component at the other end. For two-

way arrows, the two components can replace each other.

The Component Cm
i replaced by the Component Cn

i can be

expressed by the equation (2).

R : Cm
i → Cn

i (2)

To determine the conversion relationship, the front and

rear components must be correctly identified. In fact, the

component must be correctly identified twice. So the key to
solving the second problem is still time series classification.

IV. THE PROPOSED METHOD

To solve the mismatch in data models between device

components and servers, this work proposes a fusion method

based on time series classification to automatically identify

components. As shown in Fig. 4, there are four steps in the

proposed method:

1) Data generating. This step generates several data items

for each model.

2) Classifier training. This step trains some classifiers

based on the generated data items.

3) Classification. This step matches the collected data to

the corresponding model by each classifier trained in

Step 2.

4) Fusion decision. This step fuses the classification results

to obtain the final matched component.

As shown in Fig. 4, these four steps can be divided into

two stages: 1) the training stage, including data generating

and classifier training, and 2) the identification stage, including

classification and fusion decision.

In the following subsection, we will describe each step of

the proposed method in more detail.
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Fig. 4: The framework of proposed method.
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Fig. 5: Data generating

A. Data Generating

First, each model is used to generate some data item. Fig. 5

describes the data generating process. As shown in the left

part of Fig. 5, there are n models in this scenario. For each

model, m data items are generated in this step. The generated

data items are shown in the right part of Fig. 5. Each data

item can be expressed as < Si, Ci >, where Ci is the model

label and Si is a time series generated by the corresponding

model. The format of Si is shown in Eq. (1).

TABLE I: Optional parameter values of the SVM classifier

Parameters Optional values
Kernel type ’linear’, ’rbf’, ’poly’, ’sigmoid’

Regularization parameter 0.1, 1, 10, 100
Kernel coefficient 0.001, 0.01, 1, 10, 100

B. Classifier Training

The process of classifier training is shown in Fig. 6. As

depicted in Fig. 6, the generated data is divided into two parts:

training data and validation data. This step adopts the strategy

of 5-fold cross-validation. In other words, the generated data

is split into five equal parts: four parts are used as training

data, and the remaining part is used as validation data. The

spit data are then used to train three classifiers: a Support

Vector Machine (SVM) classifier [45], a Random Forest (RF)

classifier [46], and an FCN classifier [41].

1) SVM classifier: The SVM classifier divides the observed

data into different categories by maximizing the interval in the

feature space [47]. There are two steps in the proposed method

to train the SVM classifier: (1) SVM build. In this step, the

parameters of the SVM are initialized. (2) SVM parameter se-

lection. This step exhaustively searches the specified parameter

values from the Table I. The SVM classifier with the optimal

parameters is obtained through these two steps. As shown in

Fig. 6, the expected accuracy accSVM of the SVM classifier

is obtained at the same time.

2) RF classifier: The RF classifier is an ensemble classifier

based on some decision trees on different subsamples [48].

Similar to the SVM classifier, there are two steps to train the

RF classifier: (1) RF build. This step initializes the parameters

of RF. (2) RF parameter selection. This step exhaustively
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Fig. 6: Processes of classifier training.

searches the specified parameter values from Table II. This

yields the RF classifier with the optimal parameters. The

expected accuracy accRF of the RF classifier is also obtained.

3) FCN classifier: Recently, the FCN classifier has

achieved excellent performance for time series classification

[29]. In this study, the FCN classifier is constructed with five

layers: First, the training data are received by the input layer.

Then the data is processed by three hidden layers. Finally, the

class label is predicted by an output layer. The FCN classifier

is trained to minimize the categorical cross-entropy loss. After

training, the FCN classifier and the expected accuracy accFCN

are obtained.

C. Classification

Fig. 7 illustrates the classification diagram. As shown in

Fig. 7, these three classifiers independently predict the class

label of the collected data. Three classification results CSVM ,

CRF and CFCN are obtained.

D. Fusion Decision

In this step, the three classification results from the previous

step were fused to produce the final results. Fig. 8 shows

the diagram of the fusion decision. Each classification result

of the Subsection IV-C is given a corresponding weight. As

shown in Fig. 8, the weight value is the expected accuracy

of the corresponding classifier, and the value is obtained in

Subsection IV-B. The weight of class i can be calculated as

in Eq. (3), where Cp is the classification result of the SVM,

RF or FCN classifier, wp is the corresponding weight of the

result, Ci is the class label of the model M i. Then, the class

with the maximum weight is the class of the matched model.

Finally, the component corresponding to the matched model

is identified as the final result.

wi =
∑

Ci=Cp

wp (3)

V. EXPERIMENTS

A. Experimental Setting

(1) Experimental data.

In our experiments, 1000 items are generated for six com-

ponents for each experiment. The six components and their

corresponding models are shown in Table III. As Table III

shows, the models of these components are divided into two

types:

• One type is normal distribution models X ∼ N(μ, σ2).
The data distribution function of a model in this kind is

f(x) =
1

μ
√
2π

e−
(x−μ)2

2σ2 , (4)

where μ is the mean value, and σ is the standard

deviation.

• Another type is uniform distribution models X ∼
U(a, b). The data distribution function of such a model

is

f(x) =

{
1

b−a , a < x < b

0, otherwise
(5)

where a is the minimum value, and b is the maximum

value.

Due to the complex working environment, each observation

data is obtained as Eq. (6). In Eq. (6), Vm is the value

generated by the models, Ng is the Gaussian noise, and r
is the scale of reduction and enlargement. In Eq. (6), r is a

random value between −rmax and rmax.

V = (Vm +Ng) ∗ (1 + r) (6)

(2) Evaluation metrics.
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TABLE II: Optional parameter values of the RF classifier

Parameters Optional values
Number of trees in the forest 50, 100, 150, 200, 250

Maximum depth of the tree 1, 3, 5, 7, 9, 11, 13
Whether bootstrap samples are used? True, False

The quality measure function of a split ’gini’, ’entropy’

Collected 

Data

Classification ResultsClassifier

SVM classifier

RF classifier

FCN classifier

Fig. 7: The diagram of classification.

Matched

Model

Classification Results

Component

Fig. 8: The diagram of fusion decision.

TABLE III: Components and corresponding models

Component ID Corresponding model Type
C1 X ∼ N(0, 1)

Type 1C2 X ∼ N(0, 2)
C3 X ∼ N(1, 1)
C4 X ∼ U(0, 1)

Type 2C5 X ∼ U(0, 1.2)
C6 X ∼ U(−0.2, 1)

Component identification accuracy (accC) and conversion

relationship accuracy (accR) are used as the evaluation met-

rics.

AccC can be calculated as Eq. (7). In Eq. (7), Ctotal is the

total number of items collected, , and Caccuracy is the number

of the number of items correctly identified.

accC =
Caccuracy

Ctotal
(7)

AccR can be calculated as Eq. (8). In Eq. (8), Rtotal is is

the total number of conversion relations, and Raccuracy is the

number of correct conversion relationships. Since a conversion

TABLE IV: Parameters setting

Parameters Value
m: the generated number for each model 50

σ: the standard deviation of Gaussian noise 0.1
rmax: the reduction and enlargement scale 0.1

relationship is between two adjacent data items, Rtotal is equal

to Ctotal minus one.

accR =
Raccuracy

Rtotal
, (8)

(3) Experimental environment.

Experiments were run in Python on a 3.40 GHz Intel Core

i5 CPU with 16GB, 2667 MHz internal memory. Unless

otherwise stated, the parameters are set as Table IV. For

reproducibility, we have released our codes and parameters

on Github1. The results can be reproduced independently.

B. Comparison with Baselines

We contract our method with the four baselines: CNN

[40], ROCKET [42]–[44], TDE [49] and catch22 [37]. The

1Our codes: https://github.com/Ji-Cun/ModelMatching
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Fig. 9: Component identification accuracy comparison with

baselines.

Our method CNN ROCKET TDE catch22
0
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Fig. 10: Conversion relationship accuracy comparison with

baselines.

comparison results of these methods are plotted in Fig. 9 and

Fig. 10.

Among them, the component identification accuracy rates

of these methods are depicted in Fig. 9. As shown in Fig. 9,

our method has the highest component identification accuracy

among these methods.

At the same time, the conversion relationship accuracy rates

of these methods are depicted in Fig. 10. As shown in Fig. 10,

our method has the highest conversion relationship accuracy.

Overall, these results in Fig. 9 and Fig. 10 show that the

proposed method is better than the baselines.

SVM RF FCN Fusion
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Acc
C

 comparison between fusion and independence classifiers

ac
c C

Fig. 11: Component identification accuracy comparison be-

tween fusion and independence classifiers.

C. Sensitivity Analysis

(1) Fusion analysis.

As mentioned in Section IV, the proposed methods fused

three independent classifiers: SVM, RF and FCN. This set of

experiments compares the fusion and independence classifiers.

The component identification accuracy rates of the fusion

and independence classifiers are depicted in Fig. 11. Fig. 11

shows that using classifiers in fusion has a higher component

identification accuracy than using them in independence.

Meanwhile, the conversion relationship accuracy rates of

these methods the fusion and independence classifiers are

depicted in Fig. 12. Fig. 12 shows that using classifiers in

fusion has higher conversion relationship accuracy than using

them in independence.

Overall, these results in Fig. 11 and Fig. 12 show that using

classifiers in fusion can improve accuracy.

(2) Noise analysis.

We analyzed the effect of the reduction and enlargement

scale and Gaussian noise, respectively.

First, we analyze the effect of the reduction and enlarge-

ment scale. In this group of experiments, the reduction and

enlargement scale rmax is set to 0, 0.1, 0.2, · · · and 1. At the

same time, the standard deviation σ is set to 0. The effect of

the reduction and enlargement scale rmax is shown in Fig. 13.

As shown in Fig. 13, accC and accR decrease slowly as rmax

increases.

Secondly, we analyze the effect of Gaussian noise. In this

set of experiments, the standard deviation σ of the Gaussian

noise is set to 0, 0.1, 0.2, · · · and 1. At the same time, the

reduction and enlargement scale rmax is set to 0. The effect of

the Gaussian noise is shown in Fig. 14. As shown in Fig. 14,

accC and accR decrease rapidly as rmax increases.
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Fig. 12: Conversion relationship accuracy comparison between

fusion and independence classifiers.
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Fig. 13: Effect of the reduction and enlargement scale.

From Fig. 13 and Fig. 14, we can conclude that the proposed

method is robust to the reduction and enlargement scale rmax.

However, Gaussian noise has a significant impact on the

accuracy.

(3) Generated number analysis.

The effect of the generated number m in Section IV-A is

shown in Fig. 15. As shown in Fig. 15a, accC and accR
increase with m in the beginning. When m is greater than 40,

accC and accR remain at a high level. As shown in Fig. 15b,

the training time increases linearly with m. Considering accC ,

accR and training time, we suggest setting m to 40 or 50.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Effect of the Gaussian noise

 

 
acc

C

acc
R

Fig. 14: Effect of Gaussian noise.

VI. CONCLUSION

Multi-function devices can replace some of their compo-

nents to achieve a specific function. However, remote servers

are typically not informed when workers replace device com-

ponents. This leads to a mismatch in the data models between

the device components and the servers. In this case, automatic

identification of device components becomes a major chal-

lenge. To this end, this study proposes an automatic component

identification method based on time series classification for

intelligent devices. First, the component identification problem

is transformed into a time series classification problem. Then,

some classifiers are trained based on the time series data

generated by the models. In the next step, the classifiers

match the collected data with the component models. Finally,

the components are identified by a fusion decision. The

experimental results show that the proposed method has a

high component identification accuracy. In the future, we will

identify components for intelligent devices with fewer scene

constraints.
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