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ARTICLE INFO ABSTRACT

Dataset link: http://timeseriesclassification.com In various areas of real life, Multivariate Time Series Classification (MTSC) is widely used. It has been the focus
of attention of many researchers, and a number of MTSC methods have been proposed in recent years. These
methods tend to focus on the features in only a single domain. However, they have ignored the correlation
and complementarity between the features in a space of multiple domains. In this paper, a novel MTSC
method based on fusion features (MTSC_FF) is presented to address this problem. Firstly, MTSC_FF extracts
the frequency domain features using an attention layer based on continuous wavelet transform. In parallel,
MTSC_FF extracts long-range dependency features from the time domain, using a sparse self-attention layer.
Simultaneously, MTSC_FF obtains spatial correlations between multivariate time series dimensions via Kendall
coefficient. Then, a graph neural network is used to fuse all features. Finally, the fusion features are used
to predict the classification labels by means of the fully connected layer. The experimental results obtained
on the UEA datasets show that the proposed method can achieve high accuracy. In addition, the proposed
method can visualize the classification-dependent features, which is an improvement in the interpretability of
the results.
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et al., 2022) or relationships (Xiao et al., 2021) (i.e., long-range depen-
dency features). In comparison with univariate time series, multivariate

1. Introduction

Time series is a set of data collected from sensors and organized in
chronological order (Prieto, Alonso-Gonzalez, & Rodriguez, 2015). It
comes from various fields, including gene sequence research (Aach &
Church, 2001), post-operation recovery detection (Tormene, Giorgino,
Quaglini, & Stefanelli, 2009), error message recognition (Yu, Zeng,
Xue, & Ma, 2022), sleep record classification (Chambon, Galtier, Arnal,
Wainrib, & Gramfort, 2018), intoxication detection (Li, Jin, & Zhao,
2015), behavior recognition (Ma, Li, Zhang, Gao and Lu, 2019), etc.

One of the main tasks in time series analysis is time series classifi-
cation. Related methods usually predict labels for unknown time series
based on knowledge from existing labeled instances. Over the years, an
increasing number of researchers have started to focus on time series
classification.

Based on the classification objects, the current time series classifi-
cation methods can be divided into the univariate time series classifi-
cation methods and the multivariate time series classification (MTSC)
methods (Ircio, Lojo, Mori, & Lozano, 2020; Wang et al., 2022). The
former classifies the univariate time series, and the latter classifies
the multivariate time series. The univariate time series classification
methods usually perform the classification by mining local features (Ji

time series have richer information about relationships in different
dimensions. As a result, MTSC is more challenging.

A number of MTSC methods have been proposed over the years. For
example, some methods directly extract the local or long-range depen-
dency features of the original time series in the time domain (Karim,
Majumdar, Darabi, & Harford, 2019). Meanwhile, some methods clas-
sified time series based on the feature in the frequency domain using
Fourier Transform (FT) or Wavelet Transform (WT) (Yang, Yuan, &
Wang, 2022). In addition, some methods used the hidden dependen-
cies between the dimensions of the multivariate time series for the
classification (Duan et al., 2022).

In spite of the considerable efforts made by researchers, the fol-
lowing challenges still have to be overcome by these methods: (1)
Efficiently extracting long-range dependency features. The obser-
vations in the time series that follow are influenced by the observations
that precede them. For example, certain roads are more likely to
be influenced by traffic information from neighboring areas, and the
current traffic flow affects the following traffic flow. However, due
to the disadvantages of large computation and gradient explosion,
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current models such as transformer, recurrent neural networks (RNNs)
as well as long short-term memory networks (LSTMs) cannot effec-
tively extract features with long-range dependency features. Among
them, Transformer, as a gradually popular model in the field of time
series classification, has excellent results for long-range dependency
extraction. However, due to the matrix operation in performing self-
attention computation is space complexity is huge (Liu, Ren et al.,
2021). Because the length of some datasets is particularly long, the
computation of feature matrices consumes a huge amount. Therefore,
efficient extraction of effective long-range dependencies will be that
important. (2) Fusion of time and frequency domain features. Most
of the current methods have a focus on features in the time do-
main or the frequency domain. However, these methods ignore the
correlation and complementarity between features in a multi-domain
space. Numerous methods (Du, Wei, Zheng, & Ji, 2023) use only time-
domain methods, and additional frequency-domain features can be
used as regularization to further improve feature extraction. This leads
to low classification accuracy (Huang, Zhang, Fan, & Xi, 2021). (3)
Mining correlations between dimensions. Multivariate time series
have richer information between different dimensions. The use of
graph models to explore hidden dependencies among multivariate time
series is promising (Duan et al., 2022) due to the rapid development
of graph-based methods, such as graph neural network (GNN). For
example, in 3D skeleton action recognition (Ma, Tian, Wei, Wang and
Ng, 2019), there will be certain connections or spatial correlations
between the corresponding dimensions of different limbs. Numerous
multivariate approaches focus on individual dimensions, not realizing
that the relationships among dimensions are also critical. Most existing
methods have extracted features from each dimension (Karim et al.,
2019). Attention-based (Liu, Ren et al., 2021) method can obtain inter-
dimensional weights, and an attention layer over all channels captures
correlations between channels in all time steps. In contrast, GNN is a
model specifically designed for graph-structured data that captures the
complex relationships between nodes. When based on multivariate time
series graph structures through a quantitative approach, GNN learns
node representations by performing information transfer and aggrega-
tion over nodes. Transformer still performs well in processing sequence
data and natural language processing tasks. The models of GNN and
Transformer are therefore combined to fully utilize their respective
strengths to process data that contains both graph, sequence and time
series structures. And finding means to quantitatively represent the
spatial correlations between dimensions becomes crucial.

To address the above challenges, a novel MTSC method based on
Fusion Features (MTSC_FF) is proposed in this paper. Firstly, MTSC_FF
extracts the frequency domain features through an attention layer with
the help of continuous wavelet transform (CWT). In parallel, MTSC_FF
uses a sparse self-attention layer to extract long-range dependency
features from the time domain. At the same time, MTSC_FF obtains the
spatial correlations between the d multivariate time series through the
Kendall coefficient. And then, all the features are fused by means of the
GNN. Finally, the fusion features are used to predict the classification
labels through the fully connected (FC) layer.

The main contributions of this paper are as follows:

1. We propose MTSC_FF, which fused the time domain features, the
frequency domain features, and the spatial correlations among
the multivariate time series dimensions to obtain high MTSC
accuracy.

2. We use the Kendall coefficients to represent the spatial correla-
tion among the dimensions of multivariate time series.

3. Considerable experiments on various types of publicly avail-
able datasets demonstrate the effectiveness of our method. And
we explains the classification results by visualizing proposed
features.

The remainder of this paper is structured as follows. Section 2
introduces the related work. Section 3 describes our method in detail.
The experimental results are shown in Section 4. And our conclusions
are provided in Section 5.
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2. Related work

Over the years, a number of MTSC methods have been proposed. Ac-
cording to feature types, these methods are classified into time domain
feature-based, frequency domain-based, dimensions relationship-based,
and fusion feature-based methods.

2.1. Time domain feature-based methods

Time domain feature-based methods use features that directly ex-
tract local features from time series as the basis for classification. For
example, Ye and Keogh (2009, 2011) extracted some representative
segments (i.e., shapelet) for classification. Some temporal features are
adopted by Ji et al. (2022) with a fully convolutional network (FCN).

Recently, researchers have attempted to improve classification accu-
racy by utilizing the relationships of local features (long-range depen-
dency features). Hao and Cao (2020) introduced a temporal attention
based network to mine long-term and short-term dependencies of time
series. Karim et al. (2019) combined squeeze and excitation module
with LSTM and FCN model to capture relationships of features. Chen,
Yan, Wang, and Xiao (2022) a network based on sparse self-attention
and attention to extract the local features and their relationships. Hong,
Yan, Chen, et al. (2022) introduced a reset unit to model the long
dependency relationships between the local features. Xiao et al. (2021)
adopted an LSTM-based attention model to mine the relationships of
the features of multivariate time series. Liu, Ren et al. (2021) proposed
an extension of the current transformer networks with gating to model
the channel-wise and step-wise correlations. Zhang, Hou, OuYang, and
Zhou (2022) transformed time series into multiscale recurrence plot to
obtain rich time-correlated features from the time domain, and used
FCN for classification.

2.2. Frequency domain feature-based methods

Frequency domain-based methods extract features from the fre-
quency domain (Li, Bissyande, Klein, & Le Traon, 2016).

FT is one standard method to convert time series into the frequency
domain. After converting the raw data into time—frequency images by
short-time Fourier transform (STFT), Shao, Huang, and Zhu (2020)
used ResNet-50 to extract the frequency domain features. Yang et al.
(2022) combined the coefficients of discrete Fourier transform to obtain
the helpful frequency domain features. Li, Chowdhury, Shang, Gupta,
and Hong (2021) integrated STFT into deep models by initializing
convolutional filter weights as the Fourier coefficients.

WT is another standard method to convert time series into the
frequency domain. Chen et al. (2021) used multilevel discrete wavelet
decomposition to mine time-frequency domain features. Batal and
Hauskrecht (2009) applied DWT on time series data and selected the
most distinguishing set of coefficients to denote the origin time series.

2.3. Dimension relationship-based methods

Compared with univariate time series, multivariate time series have
richer dependency features among dimensions. Dimension relationship-
based methods use hidden correlations among dimensions to obtain the
spatio correlation features. Ma, Tian et al. (2019) used an attention-
based network to capture discriminative sample-specific spatial features
at each time step for MTSC. Duan et al. (2022) combined GNN and
an encoder—decoder-based variational graph pooling network, thus
creating adaptive centroids for graph coarsening. Yang, Chen, Song,
and Gong (2017) approximated the sequential dynamics and explic-
itly learned the causal correlation relationships among multiple vari-
ables. Zha, Lai, Zhou, and Hu (2022) used dynamic time warping
(DTW) as a similarity criterion to treat each sample as a graph node.
Then they represents time series classification as a node-level classifi-
cation problem in the graph, where the nodes in the graph correspond



M. Du et al.

Expert Systems With Applications 248 (2024) 123452

. . frequency
'

time & frequecncy fusion Step 4

FI R

& ®

Step 2 o 3
| R sparse .
self-attention —

Ll pe I

023 100 0.04 0.05 0.02 0.00

| Kendall | 010.0.00 100 0.00 000 0.00

| coefficient | 0.230.00 0.06 100 0.01 000

0.170.00 0.11 0.00 1.00 0.00

025005 018 0.14 003 100 )
\ >/

~ Kendall matrix

fusion features

Fig. 1. Overall structure of MTSC_FF, which has five steps.

to each sample and the links correspond to pairs of distance based
similarities. Zuo, Zeitouni, and Taher (2021) modeled spatio-temporal
dynamic features. Ding, Sun, and Zhao (2023) employed a multimodal
based graph attention network as well as a time convolution module to
mine the spatial correlation and temporal correlation.

2.4. Fusion features-based methods

Fusion feature-based methods combine features for various domains
to improve classification accuracy. El-Sappagh, Abuhmed, Islam, and
Kwak (2020) proposed an ensemble network based on CNN and a
bidirectional LSTM network, which jointly predicted multiple variables
based on the fusion of various multimodal time series. Jiang, Liu, and
Lian (2022) proposed a multimodal fusion transformer, which used
the Gramian angular field to convert time series to image, then used
CNN to mine multimodal features from time series as well as images
separately to fuse both. Chambon et al. (2018) used CNN to exploit
multivariate and multimodal polysomnography signals, which could
exploit the temporal context of each 30 s window of data. Wang, Jiang
et al. (2020) used LSTM along with an attention block to learn time
features, and a CNN along with an attention block to get fusion features
of both time features from time series and graph features from area
graphs. Iwana and Uchida (2020) et al. combined DTW as distance
features with original time series for multimodal feature fusion, and
used CNN as feature classifier.

3. The proposed method
3.1. Overview

As shown in Fig. 1 and Algorithm 1, MTSC_FF mainly includes five
steps:

Step 1. Extracting frequency domain features. This step extracts the
frequency domain features based on the time-frequency image.
In this step, MTSC_FF first transforms multivariate time series
into time—frequency images through CWT and then utilizes an
attention layer to obtain frequency domain features (Refer to
Section 3.2).

Step 2. Extracting long-range dependency features. This step ex-
tracts long-range dependency features from the time domain
by means of a sparse self-attention layer (Refer to Section 3.3).

Step 3. Calculating the spatial correlations. This step calculates the
spatial correlations among dimensions by Kendall coefficients
and represents spatial relationships through a Kendall matrix
(Refer to Section 3.4).

Step 4. Feature fusion. This step fuses fused the time domain features,
the frequency domain features, and the spatial correlations
among the multivariate time series dimensions with the help
of a GNN (Refer to Section 3.5).

Step 5. Classification. This step classifies time series based on the
fusion features through an FC layer (Refer to Section 3.6).

Algorithm 1 MTSC_FF

Require: training set: D, epochs: epoch
Ensure: MTSC_FF classifier: C;

1: Frequency image set =F

2: for each time series T in D do

3: for each dimension Dim in T do

4: Frequency image Fi= CWT(Dim)

5: F=FUFi

6: end for

7: end for

8: Frequency domain features FD = attention(F) > Step 1: Obtaining
frequency domain images and extracting frequency domain features

9: Time domain features TD = sparse sel f — attention(D) > Step 2:

Extracting time features

10: for each time series T in D do

11: Spatial correlation SC=Kendall coef ficient(T) > Step 3:
Calculating the Kendall coefficient based spatial correlations

12: end for

13: Time and frequency fusion T F=FD&T D

14: Feature fusion FF = GIN(TF) > Step 4: All feature fusion
15: C=training(D,F F,epoch) > Step 5: MTSF_FF training
16: return C

3.2. Extracting frequency domain features

MTSC_FF extracts frequency domain features through the following
steps:

Step 1: Acquisition of time-frequency image based on CWT

MTSC_FF converted every dimension of multivariate time series to
a time—frequency image through CWT. The conversion formula of CWT
is shown in Eq. (1). In Eq. (1), a is the scale factor, b is the translation
factor, bt is the index of the time series, f(¢) is the observed value at time
T,¥ % is the wavelet sequence obtained by the action of the mother
wavelet ¥(r) with a and b, |a|”2 is used as the normalization factor
to maintain the relative magnitude of energy on different scales, and
W (a, b) is the final WT coefficient.

W (a,b) = la| 2 /w FO T @

Step 2: Frequency domain features extraction

MTSC_FF extracts frequency domain features through an attention
layer. This layers extracts differentiated features by multiplying the
attention maps by the input feature maps. The attention maps are
obtained for the channel and spatial perspectives:

In channel perspective, the attention focuses on the weight of each
channel (Woo, Park, Lee, & Kweon, 2018). As shown in Fig. 2, the time—
frequency image is embedded to obtain the embedding (E, C x H x W,
where C is the channel dimension, H and W represent the height and
width dimensions of the time-frequency image, respectively). Then,
through average pooling as well as maximum pooling, the feature map
are aggregated to obtain (E’, C x 1 x 1). The channel attention is
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calculated by Eq. (2). In Eq. (2), MLP is the function of the shared
parameters, and sigmoid is the activation function.

E' = sigmoid(M LP(Avg Pool(E)) + M LP(M axPool(E))) 2

In spatial perspective, the attention focuses on the weight of each
part of the pixel and gets (Eyemion» C X H X W). As shown in
Fig. 3, the spatial attention is obtained using the average pooling (1
X H x W) as well as the maximum pooling (1 x H x W), and
then the spatial attention feature map is generated by the 2-dimension
convolution. Spatial attention is calculated according to Eq. (3). In
Eq. (3), f* denotes a 2-dimension convolution (filter size is a), (E’,
C x 1 x 1) denotes feature from channel attention layer, and sigmoid
is the activation function.

E prtontion = Sigmoid(f*([Avg Pool(E'); M ax Pool(E’)])) 3)
3.3. Extracting long-range dependency features

MTSC_FF extracts long-range dependency features from the time
domain through a sparse self-attention layer. The structure of the sparse
self-attention layer is shown in Fig. 4 and Algorithm 2. As Fig. 4 shows,
this layer is divided into two stages: Stage A and Stage B. In Stage A
and Stage B, each module is repeated twice except for the EMBED layer
and SHIFT layer (Liu, Lin et al., 2021).

The descriptions of each part are as follows:

Algorithm 2 Sparse self-attention

Require: training set: D, number of model layer: N;
Ensure: Time domain features: TF;
1: for each time series T (L x C) in D do

2: for each layer in N do > Several layers in the model
3: count =0

4 while count <2 do > Stage A and B: Two stages in each layer
5: E, (§ x4C)=embed(T)

6: E, =attention(E|)

7: 0.K,V=E,

8 E; =SM(Q, K.V, sparse matrix M) > Sparse mechanism
9: E, =LN(E;)

10: Es =M LP(E,)

11: if is Stage A then

12: Eg =SHIFT(E;) > Shift window mechanism
13: end if

14: count + +

15: end while

16: end for

17: end for

18: E=E;

19: T F=training(D,N,E) > Training and obtaining time features
20: return TF

+ EMBED layer. The EMBED layer is used to obtain the time series
embedding of time series. Firstly, the multivariate time series T
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(L x C, L is the time series length, and C is the dimension of T)
is separated by non-overlapping neighboring windows into four
time blocks. And then, each time block is flattened to get the time
series embedding (% X 4C). The above operation restricts the time
series computational self-attention to each time block, reducing
the time complexity.

Attention layer. The attention layer is used for feature refine-
ment through focusing on more distinguishing features of each
window. For more details, refer to Section 3.2.

SM layer. The sparse mechanism (SM) layer introduces a sparse
bias M to capture long-range dependency features. The structure
of the SM layer is shown in the SM module of Fig. 4. This SM layer
adopts a sparse mechanism strategy (Li et al., 2019) to accelerate
the self-attention dot product (Beltagy, Peters, & Cohan, 2020;
Wang, Li, Khabsa, Fang and Ma, 2020). This strategy limit the dot
product of each cell. As shown in Fig. 4, only the bright circles
participate in the dot product calculation, while the dark circles
do not participate in the operation. The calculation procedure of
the SM layer is summarized in Eq. (4). Q is used to query which of
K is more important and get the corresponding weight matrix, and
then multiply it by V, so that V' can focus on the more important
information and ignore the less important information. In other
words, the process of finding the importance is the process of find-
ing the similarity matching, the greater the similarity means the
higher the importance, the more attention to this part. In Eq. (4),
0O, K, and V denote the feature matrices obtained by refining
features through the previous attention layer, M functions as the
bias matrix for sparse computing, and SoftMax is a function to
process the initial output results in the classification task.

T
K +M>V @)

Tgs4 = Softmax Q0
dk

LN layer. A layer normalization (LN) layer. The hidden layers are
normalized to a standard normal distribution to speed up training
and accelerate convergence.

MLP layer. An multilayer perceptron (MLP) layer. It functions as
a fully connected layer.

SHIFT layer. The SHIFT layer adopts a shift window mechanism
to allow cross-window connections among small blocks. So, the
long-range dependent features are extracted with reducing the
computational effort.

3.4. Calculating the spatial correlations

Kendall coefficient (Abdi, 2007) is a nonparametric statistic that
measures the correlation between two variables. It measures the order
consistency between two variables rather than a linear relationship. In
practice, Kendall coefficient can be used in many important research
areas. In market research, we can use Kendall coefficient to analyze
the degree of customer preference for a product, to formulate a more
effective marketing strategy. In medical research, the Kendall coeffi-
cient can be used to analyze the relationship between the incidence of
diseases and potential risk factors, helping doctors and researchers to
better understand the causes of diseases and methods of prevention.

Suppose there is a set of data representing the math scores and
physics scores of a group of students, and we want to know whether
there is a correlation between these two variables. First, we need
to rank these two variables, i.e., rank each student’s performance in
descending order. Then, we compare each student’s math score rank-
ing and physics score ranking for consistency, i.e., we calculate their
similarity. Finally, by calculating the proportion of similarity, we can
get the Kendall coefficient.

The Kendall coefficient is calculated by comparing the rank order
of two variables and calculating the similarity between them. The
Kendall coefficient has the following advantages: Firstly, the Kendall

Expert Systems With Applications 248 (2024) 123452

coefficient is not affected by the distribution of the data, and it is
applicable to various types of data, including continuous data, discrete
data, and ordered categorical data. Secondly, Kendall coefficient is not
affected by outliers and has better robustness to outliers. In addition,
Kendall coefficient can be used to compare the correlation between
multiple variables, which can help us understand the relationship be-
tween variables more comprehensively. Therefore, it is very practical
for calculating the correlation of various characteristic time series.
The spatial correlations among dimensions are calculated through
Kendall coefficients (Abdi, 2007). Kendall coefficient is a statistic
method that measures the level of correlation of rank variables. The
Kendall coefficient between dimensions i and j can be calculated as:

c—d
KR = T 1) Q)
where ¢ is the number of element pairs with consistency in i and j, d is
the number of inconsistent element pairs, » is the length of time series.
The value range of KR;; is between -1 and 1.

A schematic diagram for constructing the Kendall matrix is shown
in Fig. 5. The calculated method for the element K;; in ith row and
jth of the Kendall matrix K is shown in Eq. (6). In Eq. (6), ¢ is the
threshold value to determine whether the Kendall relationship is valid.
If the significance p-value > 0.05 and K R;; > ¢, K;; is equal to KR;;. If
the significance p-value > 0.05 and KR;; < —c, K, is equal to KR;;. To
make the Kendall matrix more sparse, K;; is defined as 0 in otherwise.

Kij = KRU, KR,-j > c and p > 0.05
K=4K;; =KR;;, KR, <-cand p>0.05 (6
K;; =0, otherwise

3.5. Feature fusion

3.5.1. Fusion features in the time and frequency domains

MTSC_FF fuses the frequency domain features (Section 3.2) and the
time domain features (Section 3.3) through a gate fusion mechanism as
shown in Eq. (7). In Eq. (7), @ is the element-wise addition, E 4,,i0n 1S
the frequency domain features, T, is time domain features, dropout,
and dropout, is the dropout-based gate fusion mechanism.

ET = dropout|(E gyenion) ® dropouty(Tgg ) )

3.5.2. Fusion features in different dimensions

MTSC_FF fuses features in different dimensions with the help of the
Kendall matrix (refer to Section 3.4). The fusion process is shown in
Fig. 6. In the fusion process, the features in different dimension are
integrated into GIN (graph isomorphism network Xu, Hu, Leskovec, &
Jegelka, 2018) with the Kendall matrix.

The final fused feature can be represented as a matrix ET € Ry,
where d is the feature number in one dimension, / is the dimension
number of the multivariate time series. The adjacency of the nodes is
determined by the Kendall matrix K at firstly. And then, it be updated
by the GIN model (Xu et al., 2018) with Eq. (8). In Eq. (8), k is the
number of layers, ¢* is the updatable parameter, h, is the current node
feature, N(v) denotes the node neighborhood set, and s,(u € N(v))
denotes the set of node neighborhood features.

(k=1)
* — k R
by = MLPY((1+€")-hy™ + X e\ ) ®

3.6. Classification

Finally, MTSC_FF uses the final fusion features for classification by
FC layer. In this stage, we apply FC to convert fusion features into class
labels. Loss function can be calculated using Eq. (9).

N M
00 = -+ 3 Y3 logn(si) ©)
i=1j=1

In Eq. (9), y is the true class label, y is the predicted class label, N is
the training set, and M is the number of labels.
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1

0.2277 1.0000 0.0432 0.0487 0.0180 0.0000
0.1036  0.0000 1.0000 0.0000 0.0000 0.0000
0.2280  0.0000 0.0627 1.0000 0.0097 0.0000
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Fig. 5. The demo of Kendall matrix calculating.
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Fig. 6. Fusion features in different dimensions with GIN. The colored dots represent the features in one dimension, and the value on the edges is the corresponding weights.

4. Experiment
4.1. Experimental setting

4.1.1. Datasets

We use 10 multivariate benchmark datasets in the UEA! archive
for our comparison experiments. The datasets are mainly categorized
as: Human Activity Recognition (HAR), Motion, Electrocardiogram
(ECG), Electroencephalogram (EEG/MEG), and Audio Spectra (AS).
More information of all dataset are presented in Table 1. Brief relevant
information about the datasets are as follows:

ArticularyWordRecognition: 12 sensors were used in the dataset,
each providing X, Y and Z time series positions with a sampling rate
of 200 Hz. The sensors are located on the forehead, tongue; from tip to
back in the midline, lips and jaw. The three head sensors (Head Center,
Head Right, and Head Left) attached on a pair of glasses were used to
calculate head-independent movement of other sensors. Of the total of
36 available dimensions, this dataset includes just 9.

AtrialFibrillation: This dataset of two-channel ECG recordings has
been created with the goal of developing automated methods for pre-
dicting spontaneous termination of AF. The raw instances were 5 s
segments of AF, containing two ECG signals, each sampled at 128
samples per second.

1 Public datasets: http://timeseriesclassification.com/dataset.

BasicMotions: The data was generated when four students per-
formed four activities whilst wearing a smart watch. It consists of four
classes, which are walking, resting, running and badminton. Partici-
pants were required to record motion a total of five times, and the data
is sampled once every tenth of a second for a ten second period.

CharacterTrajectories: The dataset consists of 2858 character sam-
ples. The data was captured using a tablet. 3 Dimensions were kept x,
y and pen tip force. The dataset has been numerically differentiated
and Gaussian smoothed, with a sigma value of 2, and was captured at
200 Hz.

Cricket: Cricket requires an umpire to signal different events in the
game to a distant scorer/bookkeeper. The signals are communicated
with motions of the hands. The data, recorded at a frequency of
184 Hz,was collected by placing accelerometers on the wrists of the
umpires. Each accelerometer has three synchronous measures for three
axes (X, Y and Z).

EthanolConcentration: It is a dataset of raw spectra taken of water-
and-ethanol solutions in 44 distinct, real whisky bottles. The concen-
trations of ethanol are 35%, 38%, 40%, and 45%. The classification
problem is to determine the alcohol concentration of a sample con-
tained within an arbitrary bottle. In this formulation, there are four
classes, corresponding to the four concentrations.

FaceDetection: Our training data consist of MEG recordings and
the class labels (Face/Scramble), from 10 subjects (subjectO1 to sub-
jectl0), test data from 6 subjects (subjectll to 16). The data were
down-sampled to 250 Hz and high-pass filtered at 1 Hz.
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Table 1
Relevant parameters about the 21 benchmark datasets.

Dataset Type Train Test Dimensions Length Classes
ArticularyWordRecognition Motion 275 300 9 144 25
AtrialFibrillation ECG 15 15 2 640 3
BasicMotions HAR 40 40 6 100 4
CharacterTrajectories Motion 1422 1436 3 182 20
Cricket HAR 108 72 6 1197 12
EthanolConcentration HAR 261 263 3 1751 4
FaceDetection EEG/MEG 5890 3524 144 62 2
HandMovementDirection EEG/MEG 160 74 10 400 4
Heartbeat AS 204 205 61 405 2
JapaneseVowels AS 270 370 12 29 9
Libras HAR 180 180 2 45 15
LSST Other 2459 2466 6 36 14
MotorImagery EEG/MEG 278 100 64 3000 2
NATOPS HAR 180 180 24 51 6
PEMS-SF Other 267 173 963 144 7
PenDigits Motion 7494 3498 2 8 10
SelfRegulationSCP1 EEG/MEG 268 293 6 896 2
SelfRegulationSCP2 EEG/MEG 200 180 7 1152 2
SpokenArabicDigits AS 6599 2199 13 93 10
StandWalkJump ECG 12 15 4 2500 3
UWaveGestureLibrary HAR 120 320 3 315 8

HandMovementDirection: The dataset contains directionally modu-
lated MEG activity, and it was recorded while subjects performed wrist
movements in four different directions.

Heartbeat: The heart sound recordings were collected from differ-
ent locations on the body. The typical four locations are aortic area,
pulmonic area, tricuspid area and mitral area, but could be one of
nine different locations. The sounds were divided into two classes: nor-
mal and abnormal. The normal recordings were from healthy subjects
and the abnormal ones were from patients with a confirmed cardiac
diagnosis.

JapaneseVowels: 9 Japanese-male speakers were recorded saying
the vowels ‘a’ and ‘e’. A ‘12-degree linear prediction analysis’ is applied
to the raw recordings to obtain time-series with 12 dimensions. In this
dataset, instances have been padded to the longest length, 29. The
classification task is to predict the speaker.

Libras: The dataset contains 15 classes of 24 instances each, where
each class references to a hand movement type in LIBRAS. The hand
movement is represented as a bidimensional curve performed by the
hand in a period of time. The curves were obtained from videos of
hand movements, with the Libras performance from 4 different people,
during 2 sessions.

LSST: The Photometric LSST Astronomical Time Series Classification
Challenge is an open data challenge to classify simulated astronomical
time-series data in preparation for observations from the Large Synoptic
Survey Telescope (LSST), which will achieve first light in 2019 and
commence its 10-year main survey in 2022. These simulated time
series, or light curves are measurements of an object brightness as
a function of time — by measuring the photon flux in 6 different
astronomical filters.

NATOPS: The dataset is generated by sensors on the hands, elbows,
wrists and thumbs, and it is recorded in the x,y,z coordinates for each
of the eight locations.

PenDigits: This is a handwritten digit classification task. 44 writers
were asked to draw the digits (0...9), where instances are made up of
the x and y coordinates of the pen traced across a digital screen.

SelfRegulationSCP1: The subject was asked to move a cursor up and
down on a computer screen, while his cortical potentials were taken.
During the recording, the subject received visual feedback of his slow
cortical potentials. Cortical positivity lead to a downward movement
of the cursor on the screen. Cortical negativity lead to an upward
movement of the cursor. Each trial lasted 6 s.

SelfRegulationSCP2: The dataset was taken from an artificially res-
pirated patient. The subject was asked to move a cursor on a computer
screen, while his cortical potentials were taken. During the recording,

the subject received auditory and visual feedback of his slow cortical
potentials. The visual feedback was presented from second 2 to second
6.5. The sampling rate of 256 Hz and the recording length of 4.5 s
results in 1152 samples per channel for every trial.

SpokenArabicDigits: Dataset from 8800 (10 digits x 10 repetitions
X 88 speakers) time series of 13 Frequency Cepstral Coefficients had
taken from 44 males and 44 females Arabic native speakers between
the ages 18 and 40 to represent ten spoken Arabic digit.

StandWalkJump: Short duration ECG signals are recorded from a
healthy 25-year-old male performing different physical activities to
study the effect of motion artifacts on ECG signals and their sparsity.
The raw data was sampled at 500 Hz, with a resolution of 16 bits. A
Spectrogram of each instance was then created with a window size of
0.061 s and an overlap of 70%. There are 3 classes: standing, walking
and jumping, each consists of 9 instances.

UWaveGestureLibrary: A set of eight simple gestures generated from
accelerometers. The data consists of the X,Y,Z coordinates of each
motion. Each series is 315 long.

4.1.2. Experimental parameters

In all experiments, MTSC_FF uses 1 layer of attention layer, sparse
self-attention layer and GIN. Our experiments are run in python and
pytorch. Cross-entropy loss function was used for minimization and
Adam optimizer was used for optimization. The experimental results
were obtained through 50 epochs.

4.1.3. Reproducibility
For reproducibility, codes and relevant parameters were released
out on Github.? The results can be independently replicated.

4.2. Experimental performance

4.2.1. Comparison experiments
We compare the MTSC_FF with the following method:

« ED-INN (Chen et al.,, 2013): a kind of traditional Euclidean
distance based algorithm.

* DTW-1NN (Chen et al., 2013): a variant of the semi-supervised
Dynamic Time Warping (DTW) algorithm.

» MLSTM-FCN (Karim et al., 2019), combining the LSTM, FCN and
Attention block into a MTSC model by augmenting the FCN block
with a squeeze-and-excitation block to further improve accuracy.

2 https://github.com/dumingsen/MTSC_FF.
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Table 2
Accuracy comparison results.

Dataset SMATE TapNet MLSTM-FCN WEASEL+MUSE 1INN-ED INN-DTW DA-Net MR-PETSC MF-Net MTSC_FF
ArticularyWord-Recognition 0.993 0.987 0.973 0.990 0.970 0.980 0.980 0.997 0.983 0.983
Atrial-Fibrillation 0.133 0.333 0.267 0.333 0.267 0.267 0.467 0.400 0.466 0.533
BasicMotions 1.000 1.000 0.950 1.000 0.675 1.000 0.925 1.000 0.950 0.950
Character-Trajectories 0.984 0.997 0.985 0.990 0.964 0.969 0.998 0.941 0.958 0.986
Cricket 0.986 0.958 0.917 1.000 0.944 0.986 0.861 1.000 0.944 0.986
Ethanol-Concentration 0.399 0.323 0.373 0.430 0.293 0.304 0.874 0.555 0.250 0.293
FaceDetection 0.647 0.556 0.545 0.545 0.519 0.513 0.648 0.574 0.664 0.670
HandMovement-Direction 0.554 0.378 0.365 0.365 0.279 0.306 0.365 0.338 0.500 0.541
Heartbeat 0.741 0.751 0.663 0.727 0.620 0.659 0.624 0.702 0.682 0.693
JapaneseVowels 0.965 0.965 0.976 0.973 0.924 0.959 0.938 N/A 0.970 0.978
Libras 0.849 0.850 0.856 0.878 0.833 0.894 0.800 0.845 0.850 0.861
LSST 0.582 0.568 0.373 0.590 0.456 0.575 0.560 0.560 0.468 0.478
MotorImagery 0.590 0.590 0.510 0.510 0.390 N/A 0.500 0.490 0.540 0.550
NATOPS 0.922 0.939 0.889 0.870 0.860 0.850 0.878 0.917 0.927 0.889
PEMS-SF 0.803 0.751 0.699 N/A 0.705 0.734 0.867 0.861 0.884 0.884
PenDigits 0.980 0.980 0.978 0.948 0.973 0.939 0.980 0.905 0.983 0.979
SelfRegulation-SCP1 0.887 0.739 0.874 0.710 0.771 0.765 0.924 0.788 0.911 0.928
SelfRegulation-SCP2 0.567 0.550 0.472 0.460 0.483 0.533 0.561 0.533 0.533 0.511
SpokenArabic-Digits 0.979 0.983 0.990 0.982 0.967 0.960 0.980 0.960 0.990 0.990
StandWalkJump 0.533 0.400 0.067 0.333 0.200 0.333 0.400 0.400 0.400 0.467
UWaveGesture-Library 0.897 0.894 0.891 0.916 0.881 0.868 0.833 0.800 0.862 0.875
ACC 0.761 0.738 0.696 0.728 0.665 0.720 0.760 0.728 0.748 0.763
Win 5 4 1 4 0 2 2 3 3 6

The classifiers compared in the table are as follows: ED-1NN (Chen, Hu, Keogh, & Batista, 2013), DTW-1NN (Chen et al., 2013), MLSTM-FCN (Karim et al., 2019), WEASEL+MUSE
(Schéfer & Leser, 2017), TapNet (Zhang, Gao, Lin, & Lu, 2020), MR-PETSC (Feremans, Cule, & Goethals, 2022), SMATE (Zuo et al., 2021), DA-Net (Chen et al., 2022) and MF-Net

(Du et al., 2023).

+ WEASEL+MUSE (Schéfer & Leser, 2017): its novelty lies in spe-
cific way of extracting and filtering multivariate features from
MTS by encoding context information into each feature.

TapNet (Zhang et al., 2020): designing a random group permuta-
tion method combined with multi-layer convolutional networks
to learn the low-dimensional features from MTS.

MR-PETSC (Feremans et al., 2022): it constructs an embedding
based on sequential pattern occurrences and learn a linear model.
The discovered patterns form the basis for interpretable insight
into each class of time series.

SMATE (Zuo et al., 2021): a novel semi-supervised model for
learning the interpretable spatio-temporal representation from
weakly labeled MTS.

DA-Net (Chen et al., 2022): a novel network based on dual
attention to mine the local-global features for MTSC.

MF-Net (Du et al., 2023): a novel network based on self-attention
and GNN to mine the local-global-spatial based multi-features.

Table 2 shows the accuracy of these methods. The results of com-
parison methods are from SMATE (Zuo et al.,, 2021), DA-Net (Chen
et al., 2022), MR-PETSC (Feremans et al., 2022) and MF-Net (Du et al.,
2023). In Table 2, “AVG” denotes the average accuracy achieved by the
corresponding classifier on 21 datasets, “Win” denotes the number of
datasets where the corresponding classifier got the best accuracy, and
the highest accuracy for each dataset is bolded. “N/A” denotes that the
corresponding methodology fails to execute the results.

On the basis of the comparison experimental results in Table 2, we
can observe obviously that MTSC_FF achieves 6 wins on 21 datasets
and MTSC_FF has the highest average accuracy among these methods.

To show the comparison results more intuitively, we performed
post hoc test nemenyi (Benavoli, Corani, & Mangili, 2016) based on
the rank of different datasets, and we give the critical difference (CD)
plot according to the accuracy column of each method in Table 2. The
CD plot ranks the 21 MTSC methods in ascending order. As shown in
Fig. 7, MTSC_FF has the second smallest rank. The CD diagram likewise
illustrates that our method is in the first rank.

By pairwise wilcoxon signed-rank test (Benavoli et al., 2016), the
p-value between MTSC_FF and SMATE is 0.148, which is larger and
indicates no significant difference between the two methods. SMATE
only used spatio-temporal dynamic features in MTS, proved that the

temporal dependency and the evolution of the spatial interactions are
important for building a reliable MTS embedding. However SMATE
ignored the frequency features. TapNet only utilizes local features
based on the time domain, and extracting some dimensions with respect
to a single sample as a whole. The spatial correlation of the whole is
inevitably lost by performing random group alignment. Our method is
similar to TapNet and SMATE in terms of accuracy, but we make fuller
use of the fusion of time and frequency domain features and spatial
correlation features, and we visualize the various features proposed to
explain the classification, as demonstrated by the interpretability study
in Section 4.2.2.

4.2.2. Feature interpretability study

Interpretation of time domain features. In this section, we use
Grad-CAM (gradient-weighted class activation mapping) (Selvaraju
et al., 2017) to visualize the time domain-based long-range dependency
features of AtrialFibrillation dataset. As shown in Fig. 8, MTSC_FF
captures significant local features (green dashed boxed region). The
visualization clearly illustrates the ability to capture long-range depen-
dency on a cycle of the AtrialFibrillation dataset, and by observing the
activation state of a time segment, we can observe the contribution of
a particular cycle or segment to the classification. As shown in Fig. 8,
the activation states of time segments in cycle 3 and 4 are brighter
and therefore contribute the most to classification. More detailedly, the
activation states of cycle 1 and cycle 4 are plotted, and the green dashed
box region contributes the most. The long-range dependency features
can be extracted by sparse self-attention layer, which can improve the
classification accuracy.

Interpretation of frequency domain features. As shown in Fig. 9,
to visualize the activation status of the frequency domain features,
we also visualize the frequency domain modes corresponding to the
time series of each dimension of AtrialFibrillation using Grad-CAM.
The brighter colors in Figs. 9(b) and 9(d) indicate more contribution to
the classification results, while Figs. 9(a) and 9(c) shows the original
frequency domain data. The bright colors in Figs. 9(a) and 9(c) are the
most distinguishing features of AtrialFibrillation dataset, indicating the
most contribution in performing classification, which corresponds to
the original time—frequency image. The attention layer allows to focus
on more differentiated features, which can reduce feature redundancy,
reduce computational complexity, and improve accuracy.
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Fig. 8. Visualization of long-range dependency features.

(a) Time frequency image of dimension 1

(c¢) Time frequency image of dimension 2

CAM image of dimension 2

(d)

Fig. 9. (a) and (c) is the original time—frequency image, corresponding to dimension 1 and dimension 2, respectively; and (b) and (d) is the activation status image, corresponding

to dimension 1 and dimension 2, respectively.

Interpretation of spatial correlations. Fig. 10 shows the visu-
alization of Kendall spatial correlations based on three datasets: Ar-
ticularyWordRecognition with 9 dimensions, StandWalkJump with 4
dimensions, and BasicMotions with 6 dimensions, respectively. The

Kendall matrix based on Kendall coefficient describes the level of
correlation among the multivariate time series dimensions, which can
further represent the connection between the dimensions. For example,
each dimension in the ArticularyWordRecognition dataset represents
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(a) ArticularyWordRecogni-
tion

(b) StandWalkJump

(c) BasicMotions

Fig. 10. Kendall spatial correlation visualization, with colored dots indicating individual dimensions.

(a) ArticularyWordRecogni-
tion

(b) StandWalkJump

(c) BasicMotions

Fig. 11. Kendall spatial based heatmap.

the time series measured by sensors on parts such as the tongue and
lips during human vocalization, and we can understand which parts
are more tightly linked during the vocal process. Through GIN, we
can obtain spatial correlation based on the Kendall matrix, and the
reasonable use of spatial correlation can have more positive effect
for classification to obtain higher accuracy. In Fig. 11, we visualize
the level of dependency between dimensions more intuitively through
heatmaps.

4.3. Comparison of features of domains

Time domain (OTD), frequency domain (OFD), time domain+
frequency domain (OTF), time domain+spatial correlation (OTS) and
frequency domain+spatial correlation (OFS) features are separately
individually used to verify the effectiveness of each part that makes up
MTSC_FF on the accuracy. The sensitivity experiments were performed
on the 21 datasets in Table 1. Table 3 shows the comparison among
the each kind of feature. From the results in Table 3 and Fig. 13, the
average accuracy of MTSC_FF has improved and higher accuracy has
been obtained. Thus the three parts of features together proved to have
a positive impact on the study. And we can find that the accuracy
of the column of data based on the combination of features (OTF,
OFS, OTS) are higher than the average of the individual features, thus
validating the effectiveness of the individual feature domains in Table 3
and Fig. 13. In Fig. 13, each colored point indicates a dataset. The closer
to the upper left corner the point is, the better MTSC_FF performs. Thus,
the point in the area below the y = x line indicates poor performance
of MTSC_FF.

In Table 3, we can find that NATOPS works better using only
time domain data compared to other models. NATOPS is generated
by sensors on the hand, elbow, wrist and thumb on the left and
right sides of the body. And these data are x, y and z coordinates
of the corresponding positions respectively. Thus the dataset has (8
sensors * 3 = 24) 24 channels or dimensions. Due to the rich spatial

10

correlation of the data, it is important to utilize the correlation ap-
propriately. The Kendall coefficient can calculate the similarity based
on the consistency. Although NATOPS has a large number of channels
for spatial information, it does not have a richer time or frequency
domain information to complement it. The length of NATOPS is 51, and
due to the lack of significant periodical variations, only the frequency
domain features are not sufficient. Therefore only frequency domain
features are not sufficient. Finally, the large dimensionality (as shown
in Fig. 12) as well as the non-stationary properties result in a fused
ground accuracy relative to using only time-domain features.

4.4. Epoch analysis for MTSC_FF

To analyze the changing of MTSC_FF with epoch during the training
process, we obtain the loss and accuracy diagrams for epoch range
of 1-50. From Figs. 14 and 15, we show the AtrialFibrillation and
StandWalkJump accuracy and loss diagrams. Figs. 14 and 15 show
that: (1) the training and testing losses fluctuate in a small range and
the accuracy increases as the epoch increases. (2) when the epoch is
over 20, the training and testing accuracy converge, thus illustrating
the good performance of MTSC_FF. The number of training and testing
for StandWalkJump is 15 and 12 respectively. Therefore there are not
enough samples to support our model to get enough features to achieve
convergence, which ultimately leads to a large and fluctuating test_loss.

5. Conclusion

In this paper, we proposed MTSC_FF to improve the MTSC accuracy
with the fusion features. Firstly, MTSC_FF extracts the frequency do-
main features through an attention layer with the help of continuous
wavelet transform. In parallel, MTSC_FF uses a sparse self-attention
layer to extract long-range dependency features from the time domain.
At the same time, MTSC_FF obtains the spatial correlations among the
multivariate time series dimensions through the Kendall coefficient.
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Table 3
Ablation study of OTD, OFD, OTF, OTS, OFS and MTSC_FF on 21 UEA datasets.

Dataset OTD OFD OTF OTS OFS MTSC_FF
ArticularyWordRecognition  0.973  0.107 0.977 0.980 0.150 0.983
AtrialFibrillation 0.467 0.333 0.467 0.400 0.333 0.533
BasicMotions 0.850 0.250 0.925 0.900 0.300 0.950
CharacterTrajectories 0.980 0.110 0.981 0.986 0.500 0.986
Cricket 0.806 0.528 0.819 0.944 0.611 0.986
EthanolConcentration 0.270 0.251 0.270 0.251 0.251 0.293
FaceDetection 0.670 0.325 0.600 0.660 0.410 0.670
HandMovementDirection 0.541 0.203 0.486 0.541 0.405 0.541
Heartbeat 0.659 0.229 0.668 0.668 0.351 0.693
JapaneseVowels 0976 0.559 0.976 0.970 0.781 0.978
Libras 0.872 0.461 0.878 0.850 0.544 0.861
LSST 0.422 0.200 0.440 0.450 0.264 0.478
MotorImagery 0.500 0.210 0.500 0.530 0.210 0.550
NATOPS 0.950 0.167 0.922 0.850 0.561 0.889
PEMS-SF 0.850 0.410 0.861 0.867 0.451 0.884
PenDigits 0.972 0.120 0973 0.978 0.384 0.979
SelfRegulationSCP1 0.874 0.433 0.891 0.891 0.502 0.928
SelfRegulationSCP2 0.467 0.500 0.500 0.500 0.500 0.511
SpokenArabicDigits 0.979 0.106 0.980 0.981 0.436 0.990
StandWalkJump 0.400 0.333 0.400 0.400 0.333 0.467
UWaveGestureLibrary 0.828 0.381 0.828 0.847 0.381 0.875
AVG acc 0.729 0.296 0.731 0.735 0.412 0.763
Win 3 0 1 2 0 20

And then, all the features are fused by means of GNN. Finally, the fusion
features are used to predict the classification labels through the fully
connected layer. Experimental results on the UEA datasets show that
the proposed method has high accuracy. And the proposed method can
easily visualize the classification-dependent features, thus enhancing
interpretability.

Although the related work has been completed, there are still as-
pects that can be improved. We have explored only time, frequency
domain and spatial correlation features, but not other types of features.
Thus, We will explore more types of multivariate time series features
and the positive effects for MTSC. In future work, we hope that some
improvements can be made in the fusion of time and frequency domain
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features so that both can be fused more appropriately to make them
work better together for MTSC. In terms of spatial correlation, we
would like to explore more methods to obtain spatial correlation among
various dimensions of multivariate time series. We believe that the
accuracy of MTSC can be further improved in the future work.
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