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ABSTRACT

Time series classification exists in widespread domains such as EEG/ECG classification, device anomaly
detection, and speaker authentication. Although many methods have been proposed, efficient selection
of intuitive temporal features to accurately classify time series remains challenging. Therefore, this paper
presents TSC-RTF, a new time series classification method using random temporal features. First, to
ensure the intuitiveness of the features, TSC-RTF selects subsequences containing important data points
as candidates for intuitive temporal features. Then, TSC-RTF uses random sampling to reduce the number
of candidates significantly. Next, TSC-RTF selects the final temporal features using a random forest to
ensure the validity of the final temporal features. Finally, a deep learning classifier is trained by TSC-
RTF to achieve high accuracy. The experimental results show that the proposed method can compete with
the state-of-the-art methods.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Digital sensors have been developed to collect data in many
areas, including healthcare (Sun et al., 2023; Lu et al., 2021), man-
ufacturing (Hsu and Liu, 2021), smart cit (Ji et al., 2020), and intel-
ligent nutrition (Zhang et al., 2023). Usually, these observations are
in the form of time series (Ji et al., 2022b). Recently, an increasing
amount of research has been devoted to extracting valuable
knowledge from time series.

Time series classification (TSC) is one of the research hotspots in
the time series mining community (Fawaz et al., 2019; Ruiz et al,,
2020; Middlehurst et al., 2023). In general, TSC involves the assign-
ment of class labels to new time series (Esling and Agon, 2012). TSC
faces significant challenges due to high noise, high dimensionality,
and continuous updating (Ji et al., 2019a).

Over the past few years, many methods have been proposed to
solve TSC problems in widely used domains such as EEG/ECG clas-
sification, detecting device anomalies, authenticating speakers, etc
(Prieto et al., 2015).
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Improving the classification accuracy is the focus of most of
these TSC methods. However, the basis of the classification is also
needed for the domain expert. In feature-based methods, represen-
tative features are considered as the basis for the classification. For
example, doctors classify the ECG time series in Fig. 1 as hypocal-
cemia or non-hypocalcemia based on whether it has a specific fea-
ture (Ji et al.,, 2022b). By discovering representative features to
provide reasons for classification decisions, domain experts can
easily accept feature-based TSC methods.

Many feature-based TSC methods have been proposed recently.
However, these methods still face the following challenges: 1)
Intuitive features. Often, the features are not intuitive and are
obtained by special computation. For example, some methods have
chosen approximate and sample entropy as the features for classi-
fying ECG time series. These features, however, are only directly
available to domain experts with computation. On the other hand,
intuitive features (such as Q, R, S, and T waves) are more readily
accepted by them. 2) Fast feature selection. Due to the large num-
ber of intuitive feature candidates and the complexity of the eval-
uation (Ji et al., 2019a), selecting some intuitive features (such as
shapelets (Ye and Keogh, 2009)) is time-consuming. Another fun-
damental challenge for the TSC is to find a fast way to select fea-
tures. 3) High accuracy. Accuracy is one of the key metrics used
to evaluate TSC. The accuracy of traditional classifiers in combina-
tion with intuitive features is not ideal (Ji et al., 2022b). It is also a
major challenge for TSC to use intuitive features to achieve high
accuracy.
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Fig. 1. Judgment process of hypocalcemia. In this process, the doctor classifies the ECG time series as hypocalcemia or non-hypocalcemia based on whether it has a specific

feature.

To address the above three challenges, this paper proposes a
novel TSC with Random Temporal Features (TSC-RTF) method.
First, in order to ensure the intuitiveness of the features, TSC-RTF
selects subsequences that contain important data points as candi-
dates for intuitive temporal features. Then, in order to significantly
reduce the number of candidates, TSC-RTF uses a random sampling
technique. Next, TSC-RTF selects the final temporal features using a
random forest to evaluate all candidates simultaneously to ensure
the validity of the final temporal features. Finally, the TSC-RTF
trains a deep learning classifier in order to achieve a high level of
accuracy.

The main contributions of this study can be summarized as
follows:

o Firstly, a novel TSC method, TSC-RTF, was proposed to classify
time series using intuitive temporal features accurately.

e Secondly, an approach for generating temporal feature candi-
dates has been proposed. In this approach, subsequences that
contain important data points have been generated as candi-
dates for the intuitive temporal features. Thus, the intuitiveness
of the final temporal features is ensured.

e Thirdly, random sampling is used in TSC-RTF. Using random
sampling, TSC-RTF significantly reduces the number of intuitive
temporal feature candidates.

e The experimental results on the UCR TSC archive (Dau et al.,
2018) have shown that TSC-RTF achieves competitive perfor-
mance with state-of-the-art methods.

The rest of this paper is structured as follows: A number of
related works are described in Section 2. The proposal of the
method, TSC-RTF, is presented in Section 3. The experimental
results are shown in Section 4. And our conclusions are given in
Section 5.

2. Related work
2.1. Categories of TSC methods

TSC exists in many areas (Ji et al., 2022b), such as the classifica-
tion of EEG and ECG, gesture recognition, the detection of motor
faults, and many more. Consequently, an extensive number of
TSC methods have been introduced by researchers (Middlehurst
et al., 2023). These methods are broadly divided into three cate-
gories (Abanda et al., 2019):

o Distance-based TSC methods. Distance-based TSC methods
classify time series on the basis of the measure of similarity
between the instances (Abanda et al, 2019). A one-nearest
neighbor classifier with dynamic time-warping distance (1NN-
DTW) is usually used as a benchmark for TSC (Bagnall et al.,
2017).

Model-based TSC methods. Model-based TSC methods classify
time series in accordance with the closest matching model. Two
main types of models for TSC are generative models and dis-
criminative models (Baldan and Benitez, 2023; Foumani et al.,
2023).

Feature-based TSC methods. Feature-based TSC methods clas-
sify time series on the basis of a few representative features
(Xiao et al., 2021). There are usually three steps involved in this
type of method: 1) feature extraction, 2) transformation of time
series into feature vectors, and 3) classification based on the
feature vectors.

Among them, the feature-based TSC methods used the repre-
sentative features for the explanation of the classification results
(Lu et al., 2022). In this way, the domain experts’ acceptance of
the feature-based TSC methods may be more accessible.

2.2. Feature-based TSC methods

Researchers have been trying to propose different types of fea-
tures for the TSC in the last few years. The features used in TSC
include statistical features (Lubba et al., 2019; Baghizadeh et al,,
2020; Nanopoulos et al., 2001; Baldan and Benitez, 2023), struc-
tural features (Wu et al., 2021; Deng et al., 2013), frequency
domain features (Zhang et al., 2005), distance features (Abanda
et al., 2019; Kate, 2016), convolutional kernel features (Dempster
et al., 2020; Dempster et al., 2021; Dempster et al., 2023), dic-
tionary features (Middlehurst et al., 2019; Lucas et al., 2019; Le
Nguyen et al., 2019), and temporal features (Ye and Keogh, 2009;
Rakthanmanon and Keogh, 2013).

Of these, temporal features are the most intuitive and easy to
interpret (Amouri et al., 2023). The temporal features are discrim-
inating subsequences of the original time series and can be the
maximum representation of time series in a class (Ji et al., 2022b).

As part of the original time series, temporal features help
domain specialists identify if similar features are present in the
time series. In the last few decades, many researchers have been
interested in TSC methods based on temporal features.
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2.3. Temporal Feature-based TSC methods

A number of temporal feature-based TSC methods have been
proposed in recent years. Hao et al. (2023) designed a temporal
channel to extract temporal features and then classified time series
on the basis of the temporal features and other features. Yang et al.
(2023) used multiple attention mechanisms to extract temporal
features. Gated linear units were used to extract temporal features
by Liu et al. (2023). Du et al. (2023) selected local temporal fea-
tures by using a time partition and a CBAM block. However, the
focus of these methods is mainly on multivariate time series.

For univariate time series, the most commonly used temporal
feature is the shapelet (Wei et al., 2023). Various classification
strategies have been used to improve the classification accuracy
of shapelet-based methods. According to Ye and Keogh (2009),
Ye and Keogh (2011), shapelet features are embedded in a decision
tree. A random forest is constructed by randomly choosing shape-
lets to classify time series (Karlsson et al., 2016). Some researchers
have constructed a random forest by pairing the shapelets at ran-
dom (Yuan et al., 2022; Shi et al., 2018). In order to allow different
classifiers to be used for classification, the researchers then tried to
separate the process of extracting the shapelets from the classifica-
tion process (Lines et al., 2012). Following this, advanced classifiers
are used to improve classifying accuracy. Shapelet features were
used to construct an XGBoost classifier by Ji et al. (2019b). Ma
et al. (2019) constructed triple shapelet networks by combining
triple types of shapelets. An ensemble method is proposed through
the combination of the discrete wavelet transform with shapelet
features (Yan et al., 2020). In order to improve the accuracy, Ji
et al. (2022a), Ji et al. (2022b) combined the fully convolutional
network classifier with shapelet features. Although researchers
have made some attempts, combining deep learning classifiers
with shapelet features is still in its infancy.

Despite the intuitively interpretable nature of shapelet features,
selecting shapelets is time-consuming. Researchers have recently
attempted to speed up the shapelet selection process by pruning
the candidate shapelets (Li et al., 2020; Fang et al., 2018), filtering
(Li et al., 2023; Wei et al., 2023), learning (Grabocka et al., 2014;
Hou et al., 2016; Wang et al., 2019), reducing measurement com-
plexity (Ji et al., 2022b; Lines and Bagnall, 2012), and random sam-
pling (Renard et al., 2015; Gordon et al., 2015).

This study focuses on speeding up shapelet selection by random
sampling. Random shapelets are proposed in combination with the
construction of decision trees (Renard et al., 2015). Gordon et al.
(2015) introduced random order shapelet sampling to speed up
decision tree construction. Karlsson et al. (2016) proposed the gRSF
for the construction of a random forest by means of the random
selection of shapelets. Random Pairwise Shapelet Forests (PRSF)
(Yuan et al., 2022; Shi et al., 2018) are constructed by random pair-
wise shapelet sampling. The Compressed Random Shapelet Forest
(CRSF) was proposed by Yang et al. in order to compress the feature
space of the shapelets (Yang et al., 2023). However, there is a high
degree of randomness when using random sampling. We should
use the random sampling in combination with some other
strategies.

3. Our method

In this study, TSC-RTF is proposed for the rapid selection of intu-
itive features and more accurate classification. There are four main
steps in TSC-RTF, as shown in Fig. 2:
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o Candidate generation. In this step, a few discriminative subse-
quences are generated as candidates for the temporal features.
It is with this step that the intuitiveness of the final temporal
features is guaranteed.

e Random sampling. In this step, a part of the candidates is
selected at random. TSC-RTF significantly reduces the number
of intuitive temporal feature candidates by random sampling.
By doing this, TSC-RTF can significantly speed up the process
of selecting features.

o Evaluation. It is in this step that the final temporal features are
selected. This is done by evaluating the randomly generated
candidates with the help of a random forest. This step ensures
the validity of the final temporal features.

e Training. This step involves training a deep learning classifier.
This step aims to ensure that the TSC-RTF has a high level of
accuracy.

3.1. Candidate generation

TSC-RTF generates a number of discriminative subsequences as
candidates for temporal features. A discriminative subsequence is
defined as a subsequence that contains one or more of the impor-
tant data points. E.g., P, Q, R, S, and T are common important data
points, as shown in Fig. 3. In ECG classification, P waves (which
contain P), QRS waves (which contain Q, R, and S) and T waves
(which contain T) are commonly used as key features.

In a similar way, intuitive temporal feature candidates are gen-
erated with a few important data points. In TSC-RTF, the segmen-
tation points are used as important data points. As shown in Fig. 4,
the following steps are used by TSC-RTF to generate intuitive tem-
poral feature candidates:

Step 1 Identification of important data points. This step identi-
fies some segmentation points as important data points.
The segmentation method proposed by Chung et al.
(2004) is used to obtain the segmentation points.

Step 2 Discriminative subsequence extraction. The subse-
quences between two important data points are extracted
as candidates for the temporal features. This step ensures
that there is at least one important point in each of the
candidates. All candidates are thus visually recognizable.

Step 3 Filtering. In this step, subsequences that are too long or
too short will be discarded. Only the subsequences that
meet the length requirements are retained.

3.2. Random sampling

One reason why temporal feature extraction is so time-
consuming is the large number of temporal feature candidates (Ji
et al., 2022a). To overcome this challenge, TSC-RTF uses a random
sampling strategy. TSC-RTF selects a fraction of the temporal fea-
ture candidates at random. The number of random candidates is
c* k, where k is the final number of time features and c is a
constant.

The number of candidates is significantly reduced by random
sampling. This means that the speed of the selection of the tempo-
ral features is increased. Simultaneously, it ensures an optimal
number of candidates to evaluate by keeping c constant.

3.3. Evaluation

The fact that traditional methods evaluate candidates individu-
ally is another reason for slow temporal feature selection. In order
to overcome this challenge, we used the approach that we pro-
posed in our previous paper (Ji et al., 2022b). In this approach, all
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Fig. 2. The training processes of TSC-RTF: 1) candidate generation, which generates temporal feature candidates through some discriminative subsequences; 2) random
sampling, which aims to reduce the number of intuitive temporal feature candidates; 3) evaluation, which evaluates the random candidates and selects the final temporal

features; and 4) training, which trains a deep learning classifier.
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Fig. 3. Important data points of ECG. The important data points are marked as P, Q,
R, S, orT.

candidates were evaluated simultaneously using a random forest.
There are three steps involved in this approach:

Step 1: Transformation. The time series is transformed from
the time domain to the time feature space. The form of the time
series T in the temporal feature space is given by Eq. (1), where
th, -, tfi,- -, tfo. x are the randomly sampled temporal feature
candidates. The value vy; is obtained by calculating the Euclidean
distance between T and tf;.

(1)

Step 2: Candidate Evaluation. In this step, a random forest is
used to simultaneously evaluate all candidate temporal features.
First, a random forest is trained using the transformed time series.
The Gini impurity of each tree node is calculated in the next step.
The Gini impurity (Nembrini et al., 2018) is the probability that a
random sample of data is incorrectly partitioned. The Gini impurity
of a tree node can be calculated as

Trran :{U[f““‘7ytﬁ,“‘71/tfnk}

Nc
G=> p(1-p), (2)
i=1

where N¢ is the number of classes and p; is the frequency of class c;.
In the following, we can get the importance measure of each node.
Assume that the tree node node is divided into two subnodes, node,
and node,. The importance measure of node is calculated as follows

IMnode = Gnode - Gnude, - Gnoder7 (3)

where Gyoqe is the Gini impurity of node, Gyoq, is the Gini impurity of
node;, and G, is the Gini impurity of node,. Next, the importance
measure of the temporal feature candidate IMy;, is obtained by sum-
ming the nodes of the tree using the temporal feature candidate tf;
as the decision conditions in the random forest. Finally, the impor-
tance measure is normalized as

My

Ny

> My,
=

where Ny is the number of temporal feature candidates.

Step 3: Feature Selection. TSC-RTF selects the final temporal
features based on their importance measure with the following
three conditions:

IMy, = , (4)

o Candidates having a large importance measure are prioritized
and selected.

e Either the candidates with the same importance measure are
selected at the same time, or they are not selected at all.

e The selection candidates should have an importance measure
greater than 0.

3.4. Classifier training

In order to achieve precise TSC accuracy, a CNN classifier is
trained in the proposed method. As illustrated in Fig. 5, the classi-
fier takes the reduced transformed data as its input. The trans-
formed time series format (acquired in step 1 of Section 3.3) is



C. Ji, M. Du, Y. Wei et al.

Journal of King Saud University - Computer and Information Sciences 35 (2023) 101783

. Step 1I: .
Identification

_—

—0.6

—-0.8

Step 3:
Filtering (retain)

150 200 250

100 150 200 250 [ 100

Step 2: Extraction

0 10 20 30 40 50 60 70 80 90 100
Step 3:
Filtering (abandon)

Fig. 4. Steps of candidate generation: 1) identification, which identifies the important data points; 2) extraction, which extracts subsequences between two important data
points as temporal feature candidates; and 3) filtering, which discards candidates that do not meet the length requirements.
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Fig. 5. The architecture of CNN. There are one input layer, three hidden layers, and
one output layers in this architecture.

compressed by the final temporal features. Only the dimensions
corresponding to the final temporal feature are preserved. The
reduced transformed data is then used to train the CNN classifier.
The architecture of the CNN classifier is depicted in Fig. 5:

o Input layer. The input layer is the place where the reduced
transform data is input.

o Hidden layers. As illustrated in Fig. 5, the CNN classifier uses
three hidden layers to process the input data.

- Hidden layer 1. In this hidden layer, there is a convolutional
layer with 64 filters. The size of the filter kernel is set to 8. In
the hidden layer 1, the RelU is used as the activation func-
tion. An average pooling is employed within this layer to
generate channel-wise statistics.

- Hidden layer 2. In this hidden layer, a convolutional layer
with 128 filters is present, with a filter kernel size set at 5.
The ReLU activation function and the average pool are like-
wise incorporated in this hidden layer.

- Hidden layer 3. In this hidden layer, a convolutional layer
with 256 filters is present, with a filter kernel size set at 3.
The ReLU activation function and average pooling are imple-
mented as well.

e Output layer. The CNN classifier employs a SoftMax function
and a flattening layer, as illustrated in Fig. 5, to forecast the
labels of the time series.

4. Experiments
4.1. Experimental setup
We conducted all experiments using TensorFlow 2.10 on an
NVIDIA GeForce GTX 960 M graphics card in Python 3.8. The results
presented are averaged over five replicates. Our codes and param-
eters are publicly available on GitHub for reproducibility'. Anyone
is capable of reproducing the experiment results autonomously.
4.2. Comparison results with the state-of-the-art methods
We contracted TSC-RF with six state-of-the-art methods:
e TNN-DTW, the standard benchmark for TSC (Fawaz et al., 2019;
Bagnall et al., 2017).

e DTW-F (Kate, 2016) and catch22 (Lubba et al., 2019), two rep-
resentative feature-based methods.

1 Qur code: https://github.com/Ji-Cun/TSC_RTF.
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e FS (Rakthanmanon and Keogh, 2013), the benchmark of tempo-
ral feature-based methods.

e PRSF (Yuan et al., 2022; Shi et al., 2018) and CRSF (Yang et al.,
2023), the representative methods based on random temporal
features.

A critical difference diagram is implemented to assess the accu-
racy of these methods for a clear comparison. As can be seen in
Fig. 6, the TSC-RTF method has the smallest average rank among
these approaches. Thus, as shown in Fig. 6, the TSC-RTF method
outperforms the baseline methods. Please visit our GitHub reposi-
tory: https://github.com/Ji-Cun/TSC_RTF for more details.

4.3. Comparison results with TSC-TF

We compared our proposed method, TSC-RTF, which uses ran-
dom sampling to accelerate performance, against TSC-TF (Ji et al.,
2022b), our prior method lacking said strategy, on the initial 43
datasets from the UCR TSC archive (Dau et al., 2018). The compar-
ison results are shown in Fig. 7. They show that TSC-RTF outper-
formed TSC-TF on 22 datasets, lost to TSC-TF on 19, and tied in
one dataset. These results suggest that our proposed approach is
as accurate as TSC-TF. At the same time, the two methods did
not differ in classification accuracy, as shown by the Wilcoxon
signed-rank test (Wilcoxon, 1992). Therefore, the use of random
sampling as an acceleration strategy does not lead to a reduction
in accuracy.

The temporal feature selection time is proportional to the num-
ber of candidates to transform (step 1 of Section 3.3) in TSC-RTF
and TSC-TF. Fig. 8 shows a comparison of the number of candidates
to be transformed. As seen in Fig. 8, using random sampling can
significantly reduce the number of candidates. Furthermore, the
efficiency of temporal feature selection is improved.

All in all, using a random sampling strategy speeds up feature
selection without compromising accuracy.

4.4. Sensitivity analysis

The number of final temporal features k, the random sampling
constant ¢ and the alternative classifier are analyzed in this
subsection.

4.4.1. Temporal feature number analysis

In these experiments, the number of the final feature is set to
64, 128, 256, 512, 1024, and 2048. The constant c is set to 5 at
the same time. The accuracy and feature selection time of ‘Adiac’,
‘FaceAll’, and ‘Symbols’ with different numbers of temporal fea-
tures are shown in Fig. 9. Fig. 9(a) shows: 1) accuracy increases
as the number of temporal features increases, and 2) accuracy is
at a high level when the number of temporal features exceeds
512. Fig. 9(b) shows that as the temporal number of features grows
exponentially, the time to select features grows exponentially. It
should be noted that the coordinate of the Y axis in Fig. 9(b) is
exponential. That is, the feature selection time is proportional to
the number of temporal features.

Taking into account accuracy and feature selection time, the
recommended number of features is 512. We can also increase
the number of features for larger datasets and decrease the number
of features for smaller datasets.

4.4.2. Random sampling constant analysis

In this group of experiments, the constant ¢ for random sam-
pling is set to 1, 3, 5, 7, and 9. The number of temporal features
is set to 512 at the same time. The accuracy and feature selection
time of ‘Adiac’, ‘FaceAll’, and ‘Symbols’ with different c are shown
in Fig. 10. The following is shown in Fig. 10(a): 1) The accuracy
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Fig. 6. Critical difference diagram for TSC-RTF and the state-of-the-art methods. It
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smallest average rank among these methods.
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of ‘Adiac’ is higher when c is set to 3, 5 or 7. 2) The accuracy of
‘FaceAll’ is basically unchanged. 3) The accuracy of ‘TwoLeadECG’
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Fig. 10. Accuracy and feature selection time compassion with different c.

is higher when c is set to 5. In short, any dataset can achieve high
accuracy when c is 5. The feature selection time is shown in Fig. 10
(b). From Fig. 10(b), it can be concluded that the feature selection
time increases in an approximately linear way as the value of ¢
increases.

The recommended constant c is 5 for a comprehensive consid-
eration of classification accuracy and feature selection time.

4.4.3. Alternative classifier analysis
As an alternative to the CNN classifier trained in Section 3.4, the
following classifiers were used in this group of experiments.

e Less Layer CNN (CNN-LL). The architecture of the CNN-LL is
shown in Fig. 11(a). Compared to the CNN in Section 3.4,
CNN-LL reduces the hidden layer 3.

e Multi-Layer CNN (CNN-ML). The architecture of the CNN-ML is
shown in Fig. 11(b). The CNN-ML adds the hidden layer 4 to the
CNN in Section 3.4.

e CNN with more convolutional layers (CNN-MC). The architec-
ture of the CNN-MC is shown in Fig. 11(c). The CNN-MC adds
one convolutional layer to each hidden layer compared to the
CNN in Section 3.4.

Fig. 12 shows the accuracy and training time of ‘Adiac’, ‘FaceAll’,
and ‘Symbols’ with different classifiers. The accuracy of CNN and
CNN-LL is higher among them, as shown in Fig. 12(a). This means
that an increase in the complexity of the network structure does
not lead to an improvement in the accuracy. As shown in Fig. 12
(b), the time required to train CNN is less than that required to
train CNN-LL. This means that the training speed is not improved
by reducing the complexity of the network structure.

Regarding accuracy and training time, we recommend using a
three-layer CNN, as shown in Section 3.4.

5. Conclusion

Recently, TSC methods based on temporal features have
attracted the attention of many researchers because temporal fea-
tures can be used to explain the classification results. However, the
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efficient selection of intuitive temporal features for accurate time
series classification is still challenging. To this end, this paper pro-
poses TSC-RTF. First, to ensure the intuitiveness of the features,
TSC-RTF selects subsequences containing important data points
as intuitive temporal feature candidates. Then, TSC-RTF adopts a
random sampling method to reduce the number of candidates sig-
nificantly. Finally, TSC-RTF selects the final temporal features using
a random forest to evaluate all candidates simultaneously. This
step ensures the validity of the final temporal features. Finally,
TSC-RTF trains a deep learning classifier to obtain highly accurate
results. Experimental results show that the proposed method is
competitive with state-of-the-art methods.

TSC-RTF currently suffers from the following limitations: 1)
TSC-RTF is unsuitable for too small datasets due to the need to
sample randomly, and 2) the classifier structure used in TSC-RTF
is relatively simple. In the future, we will investigate how the sam-
pling rate can be automatically adjusted according to the size of

the data set. In addition, we will combine more complex classifiers
with random temporal features to improve TSC accuracy in subse-
quent works.
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