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a b s t r a c t

Along with the widespread application of Internet of things technology, time series classification have
been becoming a research hotspot in the field of data mining for massive sensing devices generate time
series all the time. However, how to accurately classify time series based on intuitively interpretable
features is still a huge challenge. For this, we proposed a new Time Series Classification method based
on Temporal Features (TSC-TF). TSC-TF firstly generates some temporal feature candidates through time
series segmentation. And then, TSC-TF selects temporal feature according the importance measures
with the help of a random forest. Finally, TSC-TF trains a fully convolutional network to obtain high
accuracy. Experiments on various datasets from the UCR time series classification archive demonstrate
the superiority of our method. Besides, we have released the codes and parameters to facilitate the
community research.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

In the era of Internet of Things, digital sensors usually collect
ata periodically in widespread domains including Industry 4.0,
mart city, medicine, and so on [1]. The collected data is usually
equences of observational values successively at uniform time
nterval, aka time series [2]. As a matter of course, discovering
he valuable knowledge hidden in time series has been attracting
ignificant interest in the data mining community recently.
In especial, time series classification (TSC), which aims to

ssigned time series to one predefined classes [3], arises in many
eal-word fields [4], including: electrocardiogram classification,
motion recognition, motor fault detection, gesture recognition,
peaker identification, etc.
Time series data has the unique characteristics of large

mount, random noise, high dimension and updated continu-
usly [5]. These characteristics bring great challenges to TSC.
herefore, various TSC methods are proposed by researchers
6–8].

In many field domains, understanding reasons behind the
lassification decision is very important for ensuring the corre-
ponding TSC method can be safely used on the field. Among TSC
ethods, feature based methods focus on exploring representa-

ive features from time series [9]. So, these methods are easier to
e accepted by domain experts. For example, the method in Fig. 1
lassified ECG time series as hypocalcemia or normal according to
hether there is specific feature in the ECG time series. As shown
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in Fig. 1, this judgment process has the corresponding medical
explanation: ‘‘The ECG of patients with hypocalcemia showed low
or inverted T wave’’.

In recent years, a large number of feature based TSC meth-
ods have been proposed. Despite its exciting prospect, feature
based TSC methods still face the following research challenges:
(1) Intuitive interpretability. Most feature based TSC methods
adopted statistical characteristics as features. For example, some
published investigations [10–12] adopted ‘CO_f 1ecac ’ (i.e. the
first 1/e crossing of autocorrelation function) as one represen-
tative feature to classify time series. However, domain experts
may not understand the meaning of this feature. Also, they can-
not directly obtain this feature, because ‘CO_f 1ecac ’ is obtained
through a series of calculations. (2) High accuracy. Up to now,
the selected features are usually combined with traditional clas-
sification methods, such as K nearest neighbor (kNN), support
vector machine (SVM), Bayesian networks, random forest, and
etc. Compared with traditional methods, deep learning methods
usually have higher accuracy. Combining deep learning classifica-
tion methods with the interpretable features to get high accuracy
is another fundamental challenge.

To address the aforementioned challenges, in this paper, we
proposed a novel TSC method based on Temporal Features (TSC-
TF). Firstly, TSC-TF generates some temporal feature candidates
with the help of one time series segmentation method [13].
Next, a random forest is used to obtain importance measures
of the temporal feature candidates. Following by, TSC-SF selects
the temporal features according to the importance measures.
Finally, aiming to obtain high accuracy, a classifier based on
Fully Convolutional Network (FCN) [14] is trained to classify the
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Fig. 1. Hypocalcemia judgment process.

transformed representation of time series based on the selected
temporal features.

The main contributions of this study can be summarized as
follows:

• Firstly, a temporal feature candidate generation method is
introduced. This generation method selected some intuitive
time series subsequences as temporal feature candidates.

• Secondly, a candidate importance measure evaluation
method is put forward. This method evaluates all candidates
at once. Only candidates with high importance measures
will be selected as temporal features.

• Thirdly, we proposed TSC-TF, which aims to classify time
series with high accuracy.

• We make experiments to show the effects of our method
on various datasets from the UCR TSC archive [15]. The
experimental results demonstrate that the proposed method
can classify time series accuracy with the help of intuitive
temporal features.

The rest of paper is structured as follow: Section 2 briefly
describes some related works. Section 3 introduces our proposed
method. Section 4 reports and discusses the experimental results,
and our conclusions are provided in Section 5.

2. Related work

2.1. Feature based TSC methods

In recent years, a large number of feature based TSC methods
have been proposed. These methods focus on mining the most
representative features from time series [9].

Some feature based TSC methods [16,17] adopted the statisti-
cal features in time domain, such as: mean, maximum, minimum,
standard deviation, mean absolute deviation, skewness, and kur-
tosis, etc. Some methods [18–20] adopted the structural features
of time series, such as: trend, seasonality, periodicity, serial cor-
relation, self-similarity, etc. Also, some researcher classified time
series based on the features in frequency domain [21–23]. These
methods first map time series from time domain to frequency do-
main through Fourier transforms or wavelet transforms, and ex-
tract the representative features from the frequency domain [24].
In addition to frequency domain, researcher extracted features
through converting time series into area graph, Gramian fields,
recurrence plots, Markov transition fields, and so on [25].

Of course, these features can also be used in combined. Fulcher
and Jones [10] computed thousands of time series features and
automatic selected a set of important features from them. Fol-
lowing by, Fulcher and Jones [11] introduced hctsa, which can
automatically select the useful features from over 7,700 time se-
ries features. On the basis of this work, Lubba et al. [12] introduce
2

the 22 canonical features (catch22) which are reduced from 4791
time series features.

In recent years, distances between time series are adopted as
features for TSC [6]. As Abanda et al. [6] described, the distance
features can be divided into global distance features and local
distance features. Global distance features mean that the dis-
tance between different series are used as features. For example,
Kate [26] used the DTW distances as features within SVMs. Local
distance features mean distance to some local patterns of the
series are used as features. Shapelet [27,28] based methods are
the representative of local distance features.

Recently, some researcher extract features through convolu-
tional kernels. For example, Dempster et al. [29,30] used the
proportion of positive values (PPV) and max pooling operator to
get two features from each convolutional kernels. In addition to
PPV, Tan et al. [31] extracted mean of positive values, mean of
indices of positive values and longest stretch of positive values
from each convolutional kernels.

The features mentioned above have a good performance and
high stability on TSC. However, these features are not directly
included in the time series. So they are not interpretable enough.

2.2. Interpretable feature based TSC methods

There are mainly two categories of interpretable feature based
TSC methods: dictionary based methods and shapelet based
methods.

2.2.1. Dictionary based methods
Dictionary based methods classify time series according to

the frequency of some similar subsequences [32]. These meth-
ods usually transformed time series into representative words
through the Symbolic Aggregate approXimation (SAX) [33] or
the Symbolic Fourier Approximation (SFA) [34] for counting the
frequency of similar subsequences [4,35].

Similar to the ‘‘bag of words’’ approach widely used in the
field of information retrieval, Lin et al. [36] presented the ‘‘bag
of patterns’’ method. This method used each SAX word as a
pattern in the time series and get a similarity measure through
comparing the frequencies of these SAX patterns. On this basis,
Senin and Malinchik [37] applied vector space model to form
the word distributions by using tf ∗ idf weighting and Cosine
similarity. To improve the noise tolerance, Schäfer proposed the
Bag of SFA Symbols (BOSS) method which replaced SAX with SFA
to obtain the word pattern. Following by, Schäfer combined BOSS
model with vector space classifier [38]. To achieve both fast and
accurate, Schäfer and Leser [39] proposed Word ExtrAction for
Time SEries cLassification (WEASEL). WEASEL used windows of
varying lengths when converting time series into words. And the
order of windows is also be considered in WEASEL. Middlehurst
et al. [32] proposed a more scalable version of the BOSS classifier
through randomly selecting the BOSS ensemble parameters. Le
Nguyen et al. [40] combined multiple symbolic representations
with linear classification models for interpreting the classification
decision.

Dictionary based TSC methods can interpret the classification
decision through the distributions of symbolic words. However,
this explanation is not intuitive enough because the symbolic
word distributions are difficult to judge directly.

2.2.2. Shapelet based methods
Shapelets are identifiable subsequences of the original time

series [27]. As the local patterns, shapelets classified time se-
ries into different classes through localized similarity [41]. For
shapelet based methods are interpretable, they have been paid
close attention by many researchers around the world recently.
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Fig. 2. The training processes of TSC-TF.
1
1

Some researcher focused on speed up the shapelet discovery
rocess. To accelerated the shapelet selection process, some re-
earchers pruned some similar shapelet candidates with SAX [42],
pecial points [3,43], bloom filters [44], or clustering [45]. Ran-
om rules are also used to accelerated the shapelet selection
rocess [46]. Some researcher speed up this process through con-
erting the shapelet searching process into a regularized learning
roblem [47,48].
Some researcher paid attention to the classifiers based on

hapelets. Ye and Keogh [27,28] combined shapelets with a de-
ision tree. Lines et al. separated the processes of classification
nd shapelet selection [49], so various classifiers can be adopted
n their method. Ji et al. [50] combined shapelets with an XGBoost
lassifier to achieve higher accuracy. Ma et al. [51] combined
riple types of shapelets, and constructed triple shapelet networks
or classification.

Through a lot of shapelet based methods are proposed, most
ethods evaluate candidates one by one. And few researchers
pplied shapelet features to deep learning classifier.

. Our method

For intuitive interpretability and high accuracy, TSC-TF are
roposed in this paper. Firstly, TSC-TF selected temporal features
rom some subsequences. In this way, the selected temporal
eatures are intuitive for each of them is a part of the original time
eries. Secondly, to speed up the feature selection process, all
emporal features are obtained at once through a random forest.
inally, TSC-TF combined the selected temporal features with a
CN classifier to achieve high accuracy.
As shown in Fig. 2 Algorithm 1, there are four main training

rocesses in the proposed method, TSC-TF:

• Temporal feature candidate generation, which generates
candidates with the help of time series segmentation (Line
1 - Line 5 in Algorithm 1).

• Candidate importance measure evaluation, which obtain
the candidates’ importance measures through a random for-
est (Line 6 in Algorithm 1).

• Temporal feature selection, which selects the final tem-
poral features based on importance measures (Line 7 in
Algorithm 1).

• FCN training, which trains a FCN classifier to obtain high
accuracy (Line 8 in Algorithm 1).

In the following subsection, we will describe these four main

rocesses in detail, respectively.

3

Algorithm 1 TSC-TF
Input: training set: D, feature number: nf , epochs: epoch
Output: FCN classifier: C;
1: candidates = ∅

2: for each time series T in D do
3: TF=generation(T ) ▷ Process 1: Temporal feature candidate generation
4: candidates = candidates ∪ TF
5: end for
6: IM=evaluation(candidates) ▷ Process 2: Candidate importance measure

evaluation
7: features=selection(candidates,IM ,nf ) ▷ Process 3: Temporal feature selection
8: C=training(D,features,epoch) ▷ Process 4: FCN training
9: return C

3.1. Temporal feature candidate generation

Firstly, our method generates temporal feature candidates
through a time series segmentation method which was intro-
duced by Chung et al. [13].

Algorithm 2 Temporal feature candidate generation
Input: time series: T , segment number: ns
Output: temporal feature candidates: TF ;
1: TF = ∅

2: nstemp = 1
3: Set = {T }

4: while nstemp < ns do
5: S = getMaxError(Set)
6: PIP = getPIP(S)
7: SL, SR = splitting(S, PIP)
8: if SL meets length condition then
9: TF = TF ∪ {SL}
10: end if
11: if SR meets length condition then
12: TF = TF ∪ {SR}
13: end if
14: Set = Set ∪ {SL, SR} − {S}
5: end while
6: return TF

For each time series in training dataset, the temporal feature
candidate generation process is shown in Fig. 3 and Algorithm
2. As Fig. 3 and Algorithm 2 shows, TSC-TF generates temporal
feature candidates through loops (Line 4 - Line 15 in Algorithm
2). In each cycle, the algorithm has the following operations:

(1) Firstly, the subsequence with maximum sum fitting error
are selected (Line 5 in Algorithm 2). The sum fitting error for one
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Fig. 3. The temporal feature candidate generation process. In each subfigure, the red dot is the new perceptually important point. The left new segment is mark in
red, the right new segment is mark in blue.
subsequence S = {tb, tb+1, . . . , ti, . . . , te−1, te} can be calculated
as Eqs. (1) and (2). In Eqs. (1) and (2), b and e are the begin and
end index of the subsequence, tb and te are the corresponding
values. i and ti are the index and value of the point which is
calculated.

errs =

e∑
i=b

erri (1)

erri =

⏐⏐⏐⏐ ti − tb
i − b

∗ (e − b) + tb − ti

⏐⏐⏐⏐ (2)

(2) Secondly, this algorithm get the Perceptually Important
Point (PIP) of the subsequence obtain by the first operation (Line
6 in Algorithm 2). PIP is the point which has the maximum fitting
error in S, and it can be get through Eq. (3). In Fig. 3, the new PIP
in every cycle is marked in red dots.

PIP = argmax
b≤i≤e

{erri} (3)

(3) Next, the selected subsequence are split into two subse-
quence SL and SR based on PIP (Line 7 in Algorithm 2). SL in the
subsequence before PIP, which is marked in red in Fig. 3. SR in the
subsequence after PIP, which is marked in green in Fig. 3.

(4) Following by, SR and SL are determined to be temporal
feature candidates or not (Line 8 - Line 13 in Algorithm 2). If SL
meets the length conditions, it will be retained as one candidates,
otherwise it will be abandoned. SR is judged by the same rules.

(5) Finally, S is removed from the subsequence set. Meanwhile,
SL and SR is added to the set. (Line 14 in Algorithm 2)

The algorithm repeats these operations until the give segment
number is met.

An example of the temporal feature candidate generation pro-
cess is given in Fig. 4. As shown in the left part of Fig. 4, Algorithm
2 initializes the subsequence set Set with the time series (Line 7
in Algorithm 2). The middle and right parts of Fig. 4 show the two
iterative processes respectively. The middle and right parts of the
graph have three subfigures respectively:

• The subfigures at the top show the selected subsequence
(Line 5 in Algorithm 2) and the corresponding PIP (Line 6
in Algorithm 2).

• The subfigures in the middle show the changes in the sub-
sequence set Set . In these subfigures, the left new segment
is marked in red, and the right new segment is marked in
blue. The new segments are added to the subsequence set
Set , and the selected subsequences are removed (Line 14 in
Algorithm 2).

• The subfigures at the bottom show the changes in temporal
feature candidates. In Iteration 1, the new segments do not
meet the length conditions, so they are not selected as
candidates. In Iteration 2, the new segments meet the length

conditions and are selected as candidates.

4

3.2. Candidate importance measure evaluation

Previous methods [27,49,52] usually evaluated temporal fea-
ture candidates one by one. Unlike them, TSC-TF evaluated all the
candidates at once.

As Fig. 5 shows, three are mainly two steps for evaluating the
candidates measures:

Step 1: time series transformation.
In this step, we transform the original time series into a new

representation. In the new representation, each temporal feature
candidate is viewed as a feature, and the corresponding value
is the distance between a temporal feature candidate S and the
original time series T . The distance between S and T is the
minimum possible distance from T to S, and it can be calculated
as Eq. (4).

D(T , S) = min
1≤i≤∥T∥−∥S∥+1

d(S i, S) (4)

In Eq. (4), ∥T∥ is the length of T and ∥S∥ is the length of S. S i =

{ti, ti+1, . . . , ti+∥S∥−1} is one subsequence of T , which start index is
i, and the length of S i is ∥S∥. The distance between subsequence
S i = {ti, ti+1, . . . , ti+∥S∥−1} and candidates S = {s1, s2, . . . , s∥S∥}
can be calculated as Eq. (5)

d(S i, S) =

√ 1
∥S∥

∥S∥∑
j=1

(ti+j − sj)2 (5)

Suppose there are m temporal feature candidates, one original
time series T will be converted into the following forms as Eq. (6).
In Eq. (6), S1, . . . , Sm are the temporal feature candidates.

TD = {D(T , S1), . . . ,D(T , Sm)} (6)

Step 2: importance measure evaluation.
Using the transformed training data as input, this step trains a

random forest classifier. Then, the importance measures of each
temporal features are counted. Through this way, the importance
measures of all candidates are evaluated at once.

The importance measure IMj for one temporal feature candi-
date Sj can be obtained through five major operations:

• Calculated the Gini impurity [53] for each tree node as
Eq. (7). In Eq. (7), ∥C∥ is the class number, pc is the class
frequency for class c in the tree node.

GI = 1 −

∥C∥∑
c=1

p2c (7)

• Calculated importance measure IMm for tree node m. As
Fig. 6 shows, IM is calculated as Eq. (8). As shown in
m
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Fig. 4. An example of the temporal feature candidate generation process.
Fig. 5. Steps for evaluating the candidate importance measures.
Fig. 6, l and r are the left and right tree nodes after split-
ting. In Eq. (8), GIm,GIl,GIr are the Gini impurity for the
corresponding tree node.

IMm = GIm − GIl − GIr (8)

• Sum the importance measure IMij for candidates Sj in one
decision tree treei as Eq. (9). In Eq. (9), M is the tree nodes
which use Sj as decision conditions in decision tree treei.

IMij =

∑
m∈M

IMm (9)

• Sum the importance measure IMj for candidates Sj in the
random forest as Eq. (10). In Eq. (10), Ntree is the number
of decision trees in the random forests.

IMj =

Ntree∑
IMij (10)
i=1

5

• Normalized the importance measure as Eq. (11). In Eq. (11),
Nc is the number of temporal feature candidates.

IMj =
IMj

Nc∑
i=1

IMi

(11)

3.3. Temporal feature selection

This process aims to obtain the final temporal features and to
represent the original time series with the final temporal features.
This process adopted the following three steps to achieve these
two goals:

(1) Threshold determination. For some temporal feature can-
didates may have same importance measures, this step convert
the given number Nf of temporal features to importance measure
threshold ε. Through ranking the candidates’ importance mea-
sures from large to small, and this step uses the Nf largest value
as the threshold ε.
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Fig. 6. Importance measure for tree node m.

(2) Final temporal feature selection. As shown in Fig. 7(a),
he candidates with a importance measure of not less than ε are
selected as final temporal features. Note than the final temporal
feature number may be more than the given number Nf when
some candidates’ importance measures are equals to ε.

(3) Representation dimension reduction. After obtaining the
emporal features, the dimensions of time series representation
which are get by step 1 in Section 3.2) will be reduced. As shown
n Fig. 7(b), only the dimensions related to selected temporal
eatures are retained.

.4. FCN training

Recently, classifiers based on FCN achieves premium perfor-
ance for time series [54], images [14], natural language process-

ng [55], etc. In order to achieve high accuracy, a classifier based
n FCN are training for the reduced representation.
The architecture of the trained classifier is shown in Fig. 8.

s shown in Fig. 8, the classifier uses reduced representation as
nput. After that, the data is processed by three hidden blocks. As
ig. 8 shows, each hidden block are composed of a convolutional
ayer, a batch normalization layer and a ReLU activation layer.
s described in Fig. 8, each convolutional layer is 1-D kernel.
he kernel sizes for these three 1-D kernels are 8, 5 and 3,
espectively. And the numbers of filters in these convolutional
ayer are 128, 256, and 128. Finally, a global average pooling layer
re used reduces the number of weights, and a softmax layer are
sed to produced the final class label.

. Experiments

.1. Experimental setup

.1.1. Datasets
The UCR TSC archive [15] are the common benchmark datasets

or TSC experiments. Considering the performance of our com-
uters, the initial 43 datasets of them are used in our experi-
ents. We list the detailed information of the selected datasets

n Table 1.

.1.2. Baseline methods
The following five methods are selected as baseline methods:

• 1NN-DTW, which is usually used as the general baseline in
TSC [4,7].

• catch22 [12] is selected as the representative of feature
based methods that are mentioned in Section 2.1.

• DTW-F [26], which uses the distances between global time
series as features.

• FS [42] is selected as the representative of interpretable fea-
ture based TSC methods that are mentioned in Section 2.2.
This method uses identifiable subsequences as features.
6

Table 1
Experiments datasets.
Dataset Train size Test size Number of

classes
Length

Adiac 390 391 37 176
Beef 30 30 5 470
CBF 30 900 3 128
ChlorineConcentration 467 3840 3 166
CinCECGTorso 40 1380 4 1639
Coffee 28 28 2 286
CricketX 390 390 12 300
CricketY 390 390 12 300
CricketZ 390 390 12 300
DiatomSizeReduction 16 306 4 345
ECG200 100 100 2 96
ECGFiveDays 23 861 2 136
FaceAll 560 1690 14 131
FaceFour 24 88 4 350
FacesUCR 200 2050 14 131
FiftyWords 450 455 50 270
Fish 175 175 7 463
GunPoint 50 150 2 150
Haptics 155 308 5 1092
InlineSkate 100 550 7 1882
ItalyPowerDemand 67 1029 2 24
Lightning2 60 61 2 637
Lightning7 70 73 7 319
Mallat 55 2345 8 1024
MedicalImages 381 760 10 99
MoteStrain 20 1252 2 84
OliveOil 30 30 4 570
OSULeaf 200 242 6 427
SonyAIBORobotSurface1 20 601 2 70
SonyAIBORobotSurface2 27 953 2 65
StarLightCurves 1000 8236 3 1024
Symbols 25 995 6 398
SwedishLeaf 500 625 15 128
SyntheticControl 300 300 6 60
Trace 100 100 4 275
TwoLeadECG 23 1139 2 82
TwoPatterns 1000 4000 4 128
UWaveGestureLibraryX 896 3582 8 315
UWaveGestureLibraryY 896 3582 8 315
UWaveGestureLibraryZ 896 3582 8 315
Wafer 1000 6164 2 152
WordSynonyms 267 638 25 270
Yoga 300 3000 2 426

4.1.3. Reproducibility
For reproducibility, we released out codes and parameters on

Github.1 The results can be independently replicated.

4.2. Performance comparison with baselines

4.2.1. Comparison of all methods
We compare the classification accuracy of TSC-TF and the

baseline methods. Table 2 lists the classification accuracy rate of
the methods. In Table 2, the accuracy listed for catch22 is taken
from [25]. And the accuracy listed for 1NN-DTW, DTW-F and FS
is taken from [4].

In Table 2, the highest accuracy rates for each dataset are given
in bold. The last two rows of Table 2 are used to count the average
accuracy and the best number of each method.

In order to compare the accuracy of these methods more
intuitively, we draw the result of Table 2 in a critical difference
diagram as shown in Fig. 9.

As Fig. 9 and Table 2 show, the proposed method has the
smallest average rank, highest average accuracy among these
methods. And the proposed method works best on most of the
dataset. These demonstrate that out method is better than the
other methods in terms of accuracy.

1 Our code: https://github.com/sdujicun/TSC_TF

https://github.com/sdujicun/TSC_TF
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Fig. 7. An example for temporal feature selection and dimension reduction.
Table 2
Classification accuracy with different methods.
Dataset 1NN-DTW DTW-F [26] catch22[12] FS [42] TSC-TF

Adiac 0.604 0.611 0.685 0.593 0.783
Beef 0.633 0.667 0.473 0.567 0.767
CBF 0.997 0.991 0.954 0.940 1.000
ChlorineConcentration 0.648 0.634 0.598 0.546 0.703
CinCECGTorso 0.651 0.715 0.803 0.859 0.708
Coffee 1.000 0.964 0.980 0.929 1.000
CricketX 0.754 0.764 0.609 0.485 0.723
CricketY 0.744 0.779 0.591 0.531 0.730
CricketZ 0.754 0.728 0.628 0.464 0.700
DiatomSizeReduction 0.967 0.935 0.925 0.866 0.875
ECG200 0.770 0.810 0.789 0.810 0.920
ECGFiveDays 0.768 0.974 0.816 0.998 0.998
FaceAll 0.808 0.757 0.811 0.626 0.753
FaceFour 0.830 0.989 0.680 0.909 0.966
FacesUCR 0.905 0.710 0.709 0.706 0.905
FiftyWords 0.690 0.747 0.598 0.481 0.627
Fish 0.823 0.949 0.773 0.783 0.933
GunPoint 0.907 0.980 0.943 0.947 0.991
Haptics 0.377 0.435 0.386 0.393 0.526
InlineSkate 0.384 0.373 0.472 0.189 0.430
ItalyPowerDemand 0.950 0.960 0.878 0.917 0.948
Lighting2 0.869 0.787 0.745 0.705 0.863
Lighting7 0.726 0.575 0.646 0.644 0.776
Mallat 0.934 0.948 0.906 0.976 0.987
MedicalImages 0.737 0.724 0.757 0.624 0.763
MoteStrain 0.835 0.909 0.849 0.777 0.866
OliveOil 0.833 0.900 0.746 0.733 0.933
OSULeaf 0.591 0.810 0.724 0.678 0.847
SonyAIBORobotSurface1 0.725 0.740 0.883 0.686 0.955
SonyAIBORobotSurface2 0.831 0.856 0.902 0.790 0.878
StarLightCurves 0.907 0.962 0.970 0.918 0.969
SwedishLeaf 0.792 0.901 0.881 0.768 0.931
Symbols 0.950 0.949 0.948 0.934 0.942
SyntheticControl 0.993 0.990 0.967 0.910 0.977
Trace 1.000 1.000 1.000 1.000 1.000
TwoLeadECG 0.905 0.985 0.854 0.924 0.962
TwoPatterns 1.000 1.000 0.849 0.908 0.929
UWaveGestureLibraryX 0.728 0.802 0.769 0.695 0.714
UWaveGestureLibraryY 0.634 0.703 0.704 0.596 0.604
UWaveGestureLibraryZ 0.658 0.732 0.706 0.638 0.671
Wafer 0.980 0.997 0.997 0.997 0.991
WordsSynonyms 0.649 0.674 0.544 0.431 0.566
Yoga 0.837 0.868 0.804 0.695 0.861

Average 0.793 0.821 0.773 0.734 0.837
Best Number 9 15 7 4 18
7
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Fig. 8. The architecture of FCN.

Fig. 9. Critical difference diagram for the proposed method and baseline
methods.

Table 3
Accuracy comparison results between TSC-TF and each baseline methods.

TSC-TF better Equal TSC-TF worse

1NN-DTW Vs. TSF-TF 26 3 14
catch22 Vs. TSF-TF 31 1 11
FS Vs. TSF-TF 39 2 2
DTW-F Vs. TSF-TF 21 1 21

4.2.2. Comparison between TSC-TF and each baseline methods
In this group of experiments, we compare TSC-TF with each

aseline method directly. The comparison results are shown in
able 3.
A comparison between the classification accuracy of 1NN-

TW and TSC-TF is shown in Fig. 10. From Fig. 10 and Table 3, it is
lear that TSC-TF produced better results with 26 datasets, 1NN-
TW performed better with 14 datasets, and the two techniques
ied with the other 3 datasets. These results suggest that the
lassification results of TSC-TF are better than 1NN-DTW.
Fig. 11 shows the classification accuracy comparison result

etween catch22 and TSC-TF. As Fig. 11 and Table 3 show, TSC-
F produced better results with 31 datasets, catch22 performed
etter with 11 datasets, and the two techniques tied with the
ther 1 datasets. These results suggest that the classification
esults of TSC-TF are better than catch22.

The classification accuracy comparison between FS and TSC-
F is shown in Fig. 12. From Fig. 12 and Table 3, it is clear that
SC-TF produced better results with 39 datasets, FS performed
etter with 2 datasets, and the two techniques tied with the other
datasets. These results suggest that the classification results of
SC-TF are better than FS.
8

Fig. 10. Accuracy comparison between TSC-TF and 1NN-DTW.

Fig. 11. Accuracy comparison between TSC-TF and catch22.

Fig. 12. Accuracy comparison between TSC-TF and FS.
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Fig. 13. Accuracy comparison between TSC-TF and DTW-F.

Fig. 13 shows the classification accuracy comparison result
between DTW-F and TSC-TF. As Fig. 13 and Table 3 show, TSC-
TF produced better results with 21 datasets, DTW-F performed
better with 21 datasets, and the two techniques tied with the
other 1 datasets. These results suggest that the classification
results of TSC-TF are no worse than DTW-F.

4.3. Sensitivity analysis

4.3.1. Feature number analysis
We set the feature number to 64, 128, 256, 512, 1024, and

2048 to analyze the effect of feature number on training time
and accuracy. In this set of experiments, the epoch of FCN is
set to 2000. Fig. 14 shows the training times and accuracy of
‘MedicalImages’, ‘Mallat’, and ‘TwoPatterns’ with different feature
numbers.

From Fig. 14, we can get the following rules: With the increase
of feature numbers, the accuracy first increases, then maintains
a high level, and finally decreases. As Fig. 14(a) shows, ‘Medi-
calImages’ achieves high accuracy when feature number ranges
from 256 to 1024. As Fig. 14(b) shows, ‘Mallat’ achieves high
accuracy when the range feature number ranges from 64 to 1024.
As Fig. 14(c) shows, ‘TwoPatterns’ achieves high accuracy when
feature number ranges from 128 .

As Fig. 14 shows, with the exponential growth of feature
numbers, the FCN training time also increases exponentially. Note
that, the X axis and the Y axis on the right are exponential
coordinates in Fig. 14.

Considering the accuracy and FCN training time, we suggest
setting the feature number to 256 or 512. Also the feature number
can be increased appropriately for large datasets, and it can be
appropriately reduced for small datasets.

4.3.2. Epoch analysis for FCN
To analyze the effect of epoch, we got the loss, accuracy and

time with epoch ranges from 1 to 2000. Note that, the feature
number is set to 256 in this group of experiments.

Fig. 15 shows the train loss and the train accuracy of ‘Medical-
Images’, ‘Mallat’, and ‘TwoPatterns’ with different epochs. From
Fig. 15, we can get that: (1) In the initial stage, with the increase
of epoch, the train loss becomes smaller and the train accuracy
becomes higher; (2) When epoch is greater than 500, the train
loss and accuracy remains basically unchanged.
9

Fig. 16 shows the time of ‘MedicalImages’, ‘Mallat’, and
‘TwoPatterns’ with different epochs. In Fig. 16, te represents for
he time of one single epoch, and ts represents for the sum time
rom the begin to this epoch. Eq. (12) shows how to get ts.

i
s =

i∑
k=1

tke (12)

As Fig. 16 shows, the fluctuations of one single epoch times
te) are within one second. In other words, there are only small
luctuations in the time of one single epoch. As a result, the over-
ll training time ts is basically proportional to epoch. Therefore,
s are basically straight lines in Fig. 16

Considering the accuracy and FCN training time, it is recom-
ended that the epoch can be adjusted in the range of 500 to
000.

. Conclusion

Recently, feature based TSC methods have been becoming a
esearch hotspot because they are able to explain the classifica-
ion results. However, how to accurately classify time series based
n intuitively interpretable features is still a huge challenge. To
ddress this changeling, TSC-TF is proposed in this work to obtain
igh accuracy with intuitively temporal features. Firstly, TSC-TF
enerates some temporal feature candidates with the help of a
ime series segmentation method. And then, a random forest is
sed to obtain importance measures of the candidates. Following
y, TSC-SF selects the temporal features according to the impor-
ance measures. Finally, a classifier based on FCN is trained to
lassify the transformed representation of time series based on
he selected temporal features. Experimental results on various
atasets from the UCR TSC archive demonstrate that the proposed
ethod can achieve better accuracy based on intuitively temporal

eatures. In the future, we will reduce the similar feature candi-
ate when generating them. Also, we will combine some speedup
trategies to speed up the time series transformation.
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